首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

2.
The semiarid Punata alluvial fan is located in the central part of Bolivia. The main activity of this region is the extensive agriculture, and groundwater is the main water supply. Local villagers who use groundwater reported that in some places groundwater has a salty taste. In order to investigate the origin of this problem, several TEM soundings were performed in the study area, and they were complemented with ERT surveys. The results show top layers with resistivity values ranging from 30 to 200 Ωm and a bottom layer with resistivity values ranging from 1 to 20 Ωm, which might be interpreted as the main aquifer and a layer with high clay content, respectively. Between the top and bottom layer, a transition zone with saline water has been identified, with resistivity values ranging from 0.1 to 1 Ωm. The origin of this closed-basin brine might be a product of the evaporation of paleolakes during the lower Pliocene, where saline clays were deposited. This study demonstrated the effectiveness of TEM sounding for mapping very low resistivity zones such as saline water.  相似文献   

3.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

4.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

5.
The objective of this study was to assess the subsurface strata and groundwater situation of Olomoro, Nigeria using borehole logging and electrical resistivity techniques. The borehole logging consisting of resistivity and spontaneous potential logs were conducted by using the Johnson Keck logger on a drilled well in the study area. The electrical resistivity survey involving 17 vertical electrical soundings (VES) with a maximum current electrode spacing of 100 to 150 m was conducted using the Schlumberger electrode configuration. Analysis of the well cuttings revealed that the lithology of the subsurface consist of topsoil, clay, very fine sand, medium grain sand, coarse sand and very coarse sand. Results of the downhole logging also revealed that the mean electrical conductivity and the total dissolved solid of the groundwater was obtained as 390 μS/cm and 245 mg/cm3 respectively. These values are within the acceptable limit set by the Standard Organization of Nigeria (SON) for drinking water. The result of the vertical electrical sounding interpreted using the computer iterative modeling revealed the presence of four to five geoelectric layers which showed a close correlation with result from the lithology and downhole logging. Results further showed that the resistivity of the subsurface aquifer ranged between 1584 and 5420 Ωm while the aquifer depths varied between 27.8 and 39.3 m. Groundwater development of the area is suggested using the depth and resistivity maps provided in this study.  相似文献   

6.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

7.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

8.
Vertical electrical soundings technique was used to evaluate the aquifer characteristics and distribution in the northern part of Paiko in Nigeria. A total of thirty vertical electrical soundings were carried out using ABEM SAS4000 Terrameter, and the data was analyzed both manually and with software (Resist software). The result revealed the aquifer resistivity and thickness to vary from 10.9 to 80,368 Ωm, and 1.06 to 72 m, respectively. Also, hydraulic conductivity ranges from 0.010267 to 41.61928 m/day while transmissivity values range from 0.035215 to 70.09302 m2. The hydrogeological maps (hydraulic conductivity and transmissivity image maps) showed the variations of these parameters in the study area and that the southwestern part of the area has prolific aquifer.  相似文献   

9.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   

10.
Vertical electrical resistivity soundings were conducted in order to delineate groundwater potential aquifers in Peddavanka watershed, which is a catchment of about 398 km2 in Anantapur District, Andhra Pradesh, India. The main lithologic units in the watershed are quartzite, limestone, shale, and alluvium. Ninety-nine vertical electrical soundings were conducted using the Schlumberger configuration, covering the entire watershed. The data were interpreted with the help of master curves and auxiliary point charts. Interpretations of VES were used to generate a top layer apparent resistivity contour map and longitudinal conductance map. Isoresistivity contour maps were prepared and interpreted in terms of resistivity and thickness of various sub-surface layers using computer software (SURFER), and isocontour diagrams depicting the depth to bedrock were prepared. Resistivity results were correlated with the existing lithology. Based on the depth to bedrock, the thickness of the saturated layer and the resistivity of the second layer, a groundwater potential map has been prepared, in which good, moderate, and poor zones are classified. The study reveals that the weathered and fractured portions in shale and limestone that occur in the southernmost and central portions of the watershed area constitute the productive water-bearing zones categorized as good groundwater potential aquifers.  相似文献   

11.
The alluvial aquifer is the primary source of groundwater along the eastern Dead Sea shoreline, Jordan. Over the last 20 years, salinity has risen in some existing wells and several new wells have encountered brackish water in areas thought to contain fresh water. A good linear correlation exists between the water resistivity and the chloride concentration of groundwater and shows that the salinity is the most important factor controlling resistivity. Two-dimensional electrical tomography (ET) integrated with geoelectrical soundings were employed to delineate different water-bearing formations and the configuration of the interface between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 410 m b.s.l. Resistivity measurements show a dominant trend of decreasing resistivity (thus increasing salinity) with depth and westward towards the Dead Sea. Accordingly, three zones with different resistivity values were detected, corresponding to three different water-bearing formations: (1) strata saturated with fresh to slightly brackish groundwater; (2) a transition zone of brine mixed with fresh to brackish groundwater; (3) a water-bearing formation containing Dead Sea brine. In addition, a low resistivity unit containing brine was detected above the 1955 Dead Sea base level, which was interpreted as having remained unflushed by infiltrating rain.  相似文献   

12.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

13.
The research site is the whole landmass of the Federal College of Education, Zaria, seated on basement complex of north-central Nigeria. Direct current resistivity geophysical method was employed to characterise parameters such as the basement depth and topography, aquifer depth and thickness, weathered basement distribution as well as mapping of orientations of fractures and faults present in the premises using radial sounding technique. The conventional vertical electrical sounding (VES) Schlumberger array was carried out at 40 stations, and eight of which were radial stations. Radial sounding was used to establish resistivity anisotropy which gives clue for the choice of consistent VES profile direction used throughout the fieldwork. Results from the resistivity interpretation suggest three layers in most parts of the premises with some minor occurrence of two and four layers. The first layer (topsoil) has its thickness ranging between 3.5 and 14.0 m; second layer (weathered basement) thickness ranges between 9.0 and 36.5 m, while the third layer (fresh basement) is deepest (40.1 m) towards the eastern corner of the area. The aquifer depth ranges from 1.5 to 4.0 m with a thickness range of 5.0 to 14.0 m. The thickest aquifer occurs around the centre to the west in the area. Results from radial sounding show presence of resistivity anisotropy, an insight to fracturing and faulting; this is more pronounced around the west-central part of the premises.  相似文献   

14.
The increasing demand for freshwater has necessitated the exploration for new sources of groundwater, particularly in hard rock terrain, where groundwater is a vital source of freshwater. A fast, cost effective, and economical way of exploration is to study and analyze geophysical resistivity survey data. The present study area Omalur taluk, Salem District, Tamil Nadu, India, is overlain by Archaean crystalline metamorphic complex. The study area is a characteristic region of unconfined aquifer system. The potential for occurrence of groundwater in the study areas was classified as very good, good, moderate, and poor by interpreting the subsurface geophysical investigations, namely vertical electrical soundings, were carried out to delineate potential water-bearing zones. The studies reveal that the groundwater potential of shallow aquifers is due to weathered zone very low resistivity and very high thickness and the potential of deeper aquifers is determined by fracture zone very low resistivity and very high thickness area. By using conventional GIS method, the spatial distribution maps for different layer (top soil, weathered zone, first fracture zone, and second fracture zone) thicknesses were prepared. The geoelectrical approach was successfully applied in the study area and can be therefore easily adopted for similar environments.  相似文献   

15.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

16.
The future development of agriculture, industry, and civil activity planned to be in the Western Desert. This strategy need to the groundwater resource. Vertical electrical soundings (VES) and electromagnetic (TEM) measurements conducted in the El Bawiti, northern Bahariya Oasis. The measurements give detailed information about the geometry of the different hydrogeological layers in the aquifer system and depth to them. A total of 22 VES and TEM were carried out within El Bawiti area. Thirty-one sub soil samples were collected from eight sites to determine the chemical characteristics and address the effects of lithogenic source and anthropogenic activity on them. The geoelectrical measurements and borehole information indicate the presence of five geoelectrical units, from top to base; the surface cover, sand and shale, upper aquifer (Nubian sandstone), sand and shale, and lower aquifer (Nubian sandstone). Surface cover was equally distributed in thickness and composed of dry sand, gravel, and clay deposits. The regional resistivity of the upper aquifer increased in the southwestern part and decline in the northern, eastern, southern, and western parts. The decline in the resistivity reflects the high water yields and potentiality, as well as low salinity. The resistivity of the lower aquifer increased due the northwestern part and the southwestern part. The information collected during this research provides valuable data for estimating the fresh- to brackish-water resources and for development of a groundwater management plan. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. The electrical conductivity of the soil ranges from 302 to 8,490 μS/cm, increases in the western and central-northern parts. It is attributed to the location from the salt-affected soils (playa), the relatively lower elevation units (depressions) and the position in landscape in the Oasis. Sodium adsorption ratio ranges from 0.44 to 11 and the exchangeable sodium ratio ranges from 0.11 to 5. The estimated magnesium hazard fluctuated below 50%. The statistical analyses were accomplished in soil chemistry and discussed.  相似文献   

17.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

18.
The integrated geophysical interpretation for the different geophysical tools such as resistivity and gravity is usually used to define the structural elements, stratigraphic units, groundwater potentiality, and depth to the basement rocks. In the present work, gravity and resistivity data were utilized for detecting the groundwater aquifer and structural elements, as well as the upper and lower surfaces of the subsurface basaltic sheet in an area located at the eastern side of Ismailia Canal, northeastern Greater Cairo, Egypt. Two hundred and ten gravity stations were measured using an Autograv instrument through a grid pattern of 50?×?50 m. The different required corrections were carried out, such as drift, elevation, tide, and latitude corrections. The final corrected data represented by the Bouguer anomaly map were filtered using high- and low-pass filters into regional and residual gravity anomaly maps. The resulting residual gravity anomaly map was used for gravity modeling to calculate the depths to the upper and lower surfaces of the basaltic sheet. The resulting gravity models indicated that the depths to the upper surface of the basaltic sheet are ranged between 26 and 314 m, where the shallower depths were found around the southern and eastern parts. The depths to the lower surface of the basaltic sheet are varied from 86 to 338 m, and the thickness of the basaltic sheet is ranged from 24 to 127 m, where the biggest thicknesses were found around the southern and northern parts of the study area. Forty-two vertical electrical soundings (VES) were carried out using Schlumberger configuration with AB/2 spacings ranged from 1.5 to 500 m. 1D quantitative interpretation was carried out through manual and analytical interpretations. The VES data were also inverted assuming a 3D resistivity distribution. The results from the 3D resistivity inversion indicated that the subsurface section consists of sand, sandstone, and sandy–clays of Miocene deposits overlying the basalts. Such basaltic features (of Oligocene age) are underlain by Gabal Ahmar Formation of Oligocene deposits, which are composed of sand and sandstone. Therefore, two aquifers were deduced in the area. The first is the Miocene aquifer (shallower) and the other is the Oligocene aquifer (deeper).  相似文献   

19.
A novel study on using geoelectrical resistivity, soil property, and hydrogeochemical analysis methods for delineating and mapping of heavy metal in aquifer system is presented in this paper. A total of 47 surveys of geoelectrical resistivity with Wenner configuration were conducted to determine the subsurface and the groundwater characteristics. The groundwater sample from 53 existing wells and 2 new wells has been analyzed to derive their water chemical content. The chemical analysis was done on the soil sample obtained from new two wells and from selected locations. The water and soil chemical analysis results from the new two wells were used as calibration in resistivity interpretation. The occurrence of heavy metal in aquifer system was expected to detect using the geoelectrical resistivity survey for the whole study area. The result of groundwater analysis shows that the groundwater sample contains a relatively low concentration of Fe (<?0.3 mg/L) elongating from the south up to the middle region. While in the middle and the northwestern, Fe concentration is relatively high (around 12 mg/L). Chemical analysis of soil sample shows that in the lower resistivity zone (<?18 Ωm), Al and Fe concentrations are comparatively high with an average of 68,000 and 40,000 mg/kg, respectively. Starting from the middle to the northwestern zone, the resistivity value appears to be low. It is definitely caused by higher Al and Fe concentration within the soil, and it is supported also by lower total anion content in the groundwater. While the resistivity value of more than 40 Ωm in aquifers is obtained in the zone which Fe concentration is relatively lower in the soil but not present in the groundwater. Correlation Fe concentration in the soil and Fe concentration in the groundwater sample shows the trend of positively linear; however, the Al concentration in soil has no correlation with Al content in groundwater. Finally, the probability of high heavy metal zone in the aquifer system is easily delineated by the distribution of geoelectrical resistivity presented in depth slice shapes which extend from the Boundary Range Composite Batholith in the north to the northwest.  相似文献   

20.
Surface geophysics and a priori information were employed to delineate the subsurface geology at Idi-oro in Abijo, Ibeju Lekki area of Lagos, Nigeria for foundation investigation purpose. Resistivity measurement was conducted using 1-D and 2-D resistivity probing techniques. The resistivity measurements were made with ABEM tetrameter model SAS 1000 system. The 1-D vertical electrical resistivity sounding data were obtained using the Schlumberger electrode array while the 2-D resistivity data were obtained using the dipole–dipole array. The interpreted results revealed three to five subsurface geological layers. This is made up of the top soil with resistivity values that vary from 132.4 to over 2,313.5 Ω?m and thickness values that range from 0.3 to 4.8 m, the fine sand with resistivity values that vary from 221.0 to 3,032.7 Ω?m and thickness values that range from 0.4 to 5.5 m, the medium sand with resistivity values that vary from 202.8 to 1,247.7 Ω?m and thickness values that range from 4.9 to 58.4 m. On the other hand, the clayey sand has the resistivity values that vary from 146.1 to 1,744.0 Ω?m and thickness values that vary from 2.2 to 26.3 m, while the coarse sand has resistivity values that vary from 238.3 to 14,313.9 Ω?m but with no thickness value because the current terminated in this layer. The resistivity data correlate well with borehole logs. On the whole, it is concluded that the investigated area has competent sand layer that can support medium to giant engineering structures with resistivity values that vary from 202 to 14,314 Ω?m and thickness values that vary from 0.8 to 58.4 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号