首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to assess the subsurface strata and groundwater situation of Olomoro, Nigeria using borehole logging and electrical resistivity techniques. The borehole logging consisting of resistivity and spontaneous potential logs were conducted by using the Johnson Keck logger on a drilled well in the study area. The electrical resistivity survey involving 17 vertical electrical soundings (VES) with a maximum current electrode spacing of 100 to 150 m was conducted using the Schlumberger electrode configuration. Analysis of the well cuttings revealed that the lithology of the subsurface consist of topsoil, clay, very fine sand, medium grain sand, coarse sand and very coarse sand. Results of the downhole logging also revealed that the mean electrical conductivity and the total dissolved solid of the groundwater was obtained as 390 μS/cm and 245 mg/cm3 respectively. These values are within the acceptable limit set by the Standard Organization of Nigeria (SON) for drinking water. The result of the vertical electrical sounding interpreted using the computer iterative modeling revealed the presence of four to five geoelectric layers which showed a close correlation with result from the lithology and downhole logging. Results further showed that the resistivity of the subsurface aquifer ranged between 1584 and 5420 Ωm while the aquifer depths varied between 27.8 and 39.3 m. Groundwater development of the area is suggested using the depth and resistivity maps provided in this study.  相似文献   

2.
Hydrogeophysical investigations of the Pleistocene aquifer at the Kom Hamada area, Egypt, have been conducted to determine the characteristics of groundwater. The main water-bearing formations in the study area are composed of Quaternary deposits. Water samples were taken and chemically analyzed at 29 sites. The constructed iso-salinity contour map of the study area showed an increase in salinity from 451.75 mg/l at eastern parts to 1,091.85 mg/l at western parts. The groundwater of the study area showed a hydrochemical evolution from Ca–HCO3 at the eastern side to Na–Cl at the western side. Some of groundwater constituents have high concentration values exceeding the safe limit for drinking. Eighteen vertical electrical soundings (VES) were conducted in the study area. These soundings were conducted near existing wells to obtain layer parameters of the various penetrated layers and to calculate the petrophysical characteristics of the aquifers. The resistivity of the first water-bearing layer ranges between 34 and 47 Ω m. The thickness of this layer ranges between 26 and 79 m. This layer represents the first aquifer, where it is followed by another water-bearing layer with resistivity ranges between 29 and 62 Ω m and extends downward. The two aquifers are hydraulically connected. Variation of the resistivities of these two water-bearing layers is mainly due to the lithological variation. The resistivity values along with the TDS values of the two water-bearing layers indicate fresh to brackish water types.  相似文献   

3.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

4.
The research site is the whole landmass of the Federal College of Education, Zaria, seated on basement complex of north-central Nigeria. Direct current resistivity geophysical method was employed to characterise parameters such as the basement depth and topography, aquifer depth and thickness, weathered basement distribution as well as mapping of orientations of fractures and faults present in the premises using radial sounding technique. The conventional vertical electrical sounding (VES) Schlumberger array was carried out at 40 stations, and eight of which were radial stations. Radial sounding was used to establish resistivity anisotropy which gives clue for the choice of consistent VES profile direction used throughout the fieldwork. Results from the resistivity interpretation suggest three layers in most parts of the premises with some minor occurrence of two and four layers. The first layer (topsoil) has its thickness ranging between 3.5 and 14.0 m; second layer (weathered basement) thickness ranges between 9.0 and 36.5 m, while the third layer (fresh basement) is deepest (40.1 m) towards the eastern corner of the area. The aquifer depth ranges from 1.5 to 4.0 m with a thickness range of 5.0 to 14.0 m. The thickest aquifer occurs around the centre to the west in the area. Results from radial sounding show presence of resistivity anisotropy, an insight to fracturing and faulting; this is more pronounced around the west-central part of the premises.  相似文献   

5.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

6.
Surface geophysics and a priori information were employed to delineate the subsurface geology at Idi-oro in Abijo, Ibeju Lekki area of Lagos, Nigeria for foundation investigation purpose. Resistivity measurement was conducted using 1-D and 2-D resistivity probing techniques. The resistivity measurements were made with ABEM tetrameter model SAS 1000 system. The 1-D vertical electrical resistivity sounding data were obtained using the Schlumberger electrode array while the 2-D resistivity data were obtained using the dipole–dipole array. The interpreted results revealed three to five subsurface geological layers. This is made up of the top soil with resistivity values that vary from 132.4 to over 2,313.5 Ω?m and thickness values that range from 0.3 to 4.8 m, the fine sand with resistivity values that vary from 221.0 to 3,032.7 Ω?m and thickness values that range from 0.4 to 5.5 m, the medium sand with resistivity values that vary from 202.8 to 1,247.7 Ω?m and thickness values that range from 4.9 to 58.4 m. On the other hand, the clayey sand has the resistivity values that vary from 146.1 to 1,744.0 Ω?m and thickness values that vary from 2.2 to 26.3 m, while the coarse sand has resistivity values that vary from 238.3 to 14,313.9 Ω?m but with no thickness value because the current terminated in this layer. The resistivity data correlate well with borehole logs. On the whole, it is concluded that the investigated area has competent sand layer that can support medium to giant engineering structures with resistivity values that vary from 202 to 14,314 Ω?m and thickness values that vary from 0.8 to 58.4 m.  相似文献   

7.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

8.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   

9.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

10.
In situ soil micro electrical resistivity measurements were carried out in a pilot plot within the Teaching and Research Farm of Ekiti State University with the aim of establishing relationships between such measurements, soil horizons, and textural classifications. The vertical electrical sounding (VES) technique was adopted for horizon mapping, while the horizontal profiling (HP) technique was used to determine the spatial distribution of in situ soil electrical resistivity of the topmost horizon. Twenty-five VES points were occupied with the Wenner electrode array and electrode spacing that was varied from 2 to 128 cm (0.02 to 1.28 m). The VES data were interpreted by partial curve matching and computer assisted 1-D forward modeling with the IPI2Win software. HP data were also acquired with the Wenner electrode array with a constant electrode separation of 8 cm and station interval of 1 m. Resistivity measurements were taken at 729 stations. The HP data were classified into resistivity-derived soil classes using a standard table. Eighty-one soil samples were collected from the topmost (0–3 cm) horizon and textural classification was derived from the particle size distributions. The resistivity range of values for the identified three layers was 38–590, 328–5222, and 393–900 Ω·m respectively. The average resistivities of the three layers were 263, 2554, and 703 Ω·m, with respective thicknesses of 2.85 cm, 45.52 cm, and infinite. The above resistivity regimes of the three horizons were attributed to responses from the O, A, and B soil horizons. The resistivity values of the O-horizon ranging from 210 to 750 Ω·m were classified as clayey sand while values greater than 750 Ω·m were classified as sand. The soil textural classifications obtained within the horizon were the sandy loam and loamy sand types. The cross-tabulation and spatial pattern comparison of resistivity-derived soil classes and textural classifications showed that whereas there existed some overlapping relationships, the sandy loam textural class had stronger association with the resistivity-derived clayey sand soil type, and the loamy sand textural class had stronger association with the more resistive sand soil type. This study therefore established that in situ soil electrical resistivity can be used for soil horizon mapping and textural classification.  相似文献   

11.
The semiarid Punata alluvial fan is located in the central part of Bolivia. The main activity of this region is the extensive agriculture, and groundwater is the main water supply. Local villagers who use groundwater reported that in some places groundwater has a salty taste. In order to investigate the origin of this problem, several TEM soundings were performed in the study area, and they were complemented with ERT surveys. The results show top layers with resistivity values ranging from 30 to 200 Ωm and a bottom layer with resistivity values ranging from 1 to 20 Ωm, which might be interpreted as the main aquifer and a layer with high clay content, respectively. Between the top and bottom layer, a transition zone with saline water has been identified, with resistivity values ranging from 0.1 to 1 Ωm. The origin of this closed-basin brine might be a product of the evaporation of paleolakes during the lower Pliocene, where saline clays were deposited. This study demonstrated the effectiveness of TEM sounding for mapping very low resistivity zones such as saline water.  相似文献   

12.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

13.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

14.
Geoelectrical survey was carried out in the western delta region of River Vasista Godavari, Andhra Pradesh, India, for delineation of groundwater prospective zones due to acute shortage of water supply for various purposes. Forty-six vertical electrical soundings (VES) were done, employing the Schlumberger configuration with a maximum AB/2 of 160 m. The interpreted results of VES show four to five layers with variable thicknesses, such as topsoil zone (1.5–3 m), clay zone (0.84–32 m), finer sand zone (2–72 m), medium to coarse sand zone (4 to 28.8 m) and clay zone (1.2–∞ m), indicating a multi-aquifer system. These results are corroborated with the known lithologs of the study area. Further, the resistivity is also compared with electrical conductivity (EC) of groundwater observed nearby shallow wells representing buried channel (BC), flood plain (FP) and coastal (C) zones, which indicate slightly brackish to brackish water (EC: 1470–6010 µS/cm), whereas the groundwater observed from deep wells shows the fresh (EC: 726–1380 µS/cm), fresh to brackish (EC: 1010 to 3250 µS/cm), and brackish water (EC: 3020 to 4170 µS/cm) located in BC, FP and C zones, respectively. This survey reveals the prospective aquifer zones with potable water at VES locations of 4–6, 8, 10, 11, 14, 16–28, 33–36, 39 and 42–44, where the resistivity values vary from 10 to 40 Ω m. The slightly brackish and brackish water zones are also observed from the resistivity of less than 10 Ω m at shallow depth in BC (VES-22, 37, 38 and 46), FP (VES-1, 2, 7, 29, 30 and 40) and C (VES-3, 4, 9, 12, 13, 15, 31, 32, 41 and 45) zones. As a result, the present investigation has delineated the freshwater zones at shallow (<?12 m) and also at deeper depths (30–45 m) as prospective areas, where BC zone occurs. Freshwater pockets also identified in FP (VES-8 and 39) and C (VES-11, 14 and 15) zones. Thus, this study helps to solve the drinking and irrigation water problems.  相似文献   

15.
This paper deals with the analysis of groundwater condition in an alluvial aquifer system underlying Kushabhadra-Bhargavi River basin of Odisha, India. The rainfall data and river-stage data of the Kushabhadra River were analyzed for the periods of 1995–2009 and 1991–2010, respectively. Using the available lithologic data, geologic profiles along North-South and East-West sections were prepared and stratigraphy analysis was performed to characterize aquifers and confining layers present in the river basin. The results of stratigraphic analyses indicated that a two-layered aquifer system consisting of an unconfined aquifer and a confined aquifer exists in the study area. The thickness of unconfined aquifer varies from 3.4 to 46.5 m, whereas that of confined aquifer varies from 3.1 to 80.3 m over the basin with an interconnecting confining layer of thickness ranging from 2.1 to 60.0 m. The rainfall-groundwater dynamics and hydraulic connectivity were also investigated for gaining insights into groundwater characteristics. The analysis of groundwater levels indicated that the correlation among the 14 sites is better for most pairs of the sites (r = 0.50 to 0.96) in case of pre-monsoon season’s data and annual data as compared to monsoon and post-monsoon season’s data. This indicates good hydraulic connectivity among the observed sites in the study area. The significant seasonal groundwater fluctuations in the study area indicate appreciable recharge to the aquifer during the monsoon season. The findings obtained and insights gained from this study can be helpful for the water managers and decision makers to understand groundwater dynamics for the efficient planning and management of vital groundwater resources in the region. It is recommended that groundwater monitoring should be continued at more sites to understand long-term spatio-temporal characteristics of groundwater in the study area.  相似文献   

16.
Geological transition zones are noted to be problematic in groundwater potential and development, due to their erratic and complex nature as well as characteristic of the subsurface lithologies. There were several occurrences of reported borehole failures and dry wells in these zones in Nigeria as a result of very scanty information that could serve as database for studying its groundwater potential. This study was therefore designed to generate hydrogeophysical data that could serve as baseline information on the groundwater potential in the study. In addition, to also delineate various subsurface lithologies present. Electrical resistivity survey for geophysical investigation was carried out using vertical electrical sounding (VES) technique. A total of 150 VES stations were purposively probed using Schlumberger electrode array. The interpreted data were used to produce geoelectric subsurface lithologies and to draw the geological section across the entire area. Various subsurface lithologies with their resistivities (Ωm) were delineated for basement complex (BC), transition zone (TZ), and sedimentary terrain (ST). In BC were topsoil, weathered zone, and fresh bedrock and in TZ were topsoil, sandy, laterite/clay, dry sand, sandstone, and fresh bedrock delineated while in the ST, topsoil, lateritic and sandy clay, dry sand, and the sandstone were delineated. In conclusion, the groundwater potential of the study area is largely been affected by the topography and the nature/composition of the Abeokuta Group that underlie the sedimentary part of the study area and the presence of thick laterite/clay unit of the basement complex portion of the study area.  相似文献   

17.
The integrated geophysical interpretation for the different geophysical tools such as resistivity and gravity is usually used to define the structural elements, stratigraphic units, groundwater potentiality, and depth to the basement rocks. In the present work, gravity and resistivity data were utilized for detecting the groundwater aquifer and structural elements, as well as the upper and lower surfaces of the subsurface basaltic sheet in an area located at the eastern side of Ismailia Canal, northeastern Greater Cairo, Egypt. Two hundred and ten gravity stations were measured using an Autograv instrument through a grid pattern of 50?×?50 m. The different required corrections were carried out, such as drift, elevation, tide, and latitude corrections. The final corrected data represented by the Bouguer anomaly map were filtered using high- and low-pass filters into regional and residual gravity anomaly maps. The resulting residual gravity anomaly map was used for gravity modeling to calculate the depths to the upper and lower surfaces of the basaltic sheet. The resulting gravity models indicated that the depths to the upper surface of the basaltic sheet are ranged between 26 and 314 m, where the shallower depths were found around the southern and eastern parts. The depths to the lower surface of the basaltic sheet are varied from 86 to 338 m, and the thickness of the basaltic sheet is ranged from 24 to 127 m, where the biggest thicknesses were found around the southern and northern parts of the study area. Forty-two vertical electrical soundings (VES) were carried out using Schlumberger configuration with AB/2 spacings ranged from 1.5 to 500 m. 1D quantitative interpretation was carried out through manual and analytical interpretations. The VES data were also inverted assuming a 3D resistivity distribution. The results from the 3D resistivity inversion indicated that the subsurface section consists of sand, sandstone, and sandy–clays of Miocene deposits overlying the basalts. Such basaltic features (of Oligocene age) are underlain by Gabal Ahmar Formation of Oligocene deposits, which are composed of sand and sandstone. Therefore, two aquifers were deduced in the area. The first is the Miocene aquifer (shallower) and the other is the Oligocene aquifer (deeper).  相似文献   

18.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

19.
The future development of agriculture, industry, and civil activity planned to be in the Western Desert. This strategy need to the groundwater resource. Vertical electrical soundings (VES) and electromagnetic (TEM) measurements conducted in the El Bawiti, northern Bahariya Oasis. The measurements give detailed information about the geometry of the different hydrogeological layers in the aquifer system and depth to them. A total of 22 VES and TEM were carried out within El Bawiti area. Thirty-one sub soil samples were collected from eight sites to determine the chemical characteristics and address the effects of lithogenic source and anthropogenic activity on them. The geoelectrical measurements and borehole information indicate the presence of five geoelectrical units, from top to base; the surface cover, sand and shale, upper aquifer (Nubian sandstone), sand and shale, and lower aquifer (Nubian sandstone). Surface cover was equally distributed in thickness and composed of dry sand, gravel, and clay deposits. The regional resistivity of the upper aquifer increased in the southwestern part and decline in the northern, eastern, southern, and western parts. The decline in the resistivity reflects the high water yields and potentiality, as well as low salinity. The resistivity of the lower aquifer increased due the northwestern part and the southwestern part. The information collected during this research provides valuable data for estimating the fresh- to brackish-water resources and for development of a groundwater management plan. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. The electrical conductivity of the soil ranges from 302 to 8,490 μS/cm, increases in the western and central-northern parts. It is attributed to the location from the salt-affected soils (playa), the relatively lower elevation units (depressions) and the position in landscape in the Oasis. Sodium adsorption ratio ranges from 0.44 to 11 and the exchangeable sodium ratio ranges from 0.11 to 5. The estimated magnesium hazard fluctuated below 50%. The statistical analyses were accomplished in soil chemistry and discussed.  相似文献   

20.
Vertical electrical sounding (VES), employing a Schlumberger electrode configuration, was used to investigate the sediments and aquifer repositories in Itu Local Government Area of Akwa Ibom state, southern Nigeria. This was done in sixteen (16) locations/communities with the maximum current electrode spread ranging between 800–1000m. The field data were interpreted using forward and iterative least square inversion modeling, which gives a resolution with 3–5 geoelectric layers. The observed frequencies in curve types include 31.25% of AKH, 18.8% of AAK and HK and 6.25% of K, QHK, AKH, KA and KHQ, respectively. These sets of curves show a wide range of variabilities in resistivities between and within the layers penetrated by current. The presence of K and H curve types in the study area indicates the alteration of the geomaterials with limited hydrologic significance to the prolific groundwater repository. A correlation of the constrained nearby borehole lithology logs with the VES results shows that the layers were all sandy formations (fine and well sorted sands to gravelly sands or medium to coarse-grained sands as described by nearby lithology logs) with some wide ranges of electrical resistivity values and thicknesses caused by electrostratigraphic inhomogeneity. The geologic topsoil (motley topsoil) is generally porous and permeable and as such the longitudinal conductance (S) values for the covering/protective layer is generally less than unity of Siemens (S < 1Ω?1), the value considered for efficient protection of the underlying aquifers by the topmost and overlying layer. The spatial orientations and the leveling patterns of the most economically viable potential groundwater repository within the maximum current electrode separations has been delineated in 2-D and 3-D contoured maps. The estimated depth range for the desired groundwater repository is 32.6–113.1m and its average depth value is 74.30m. The thickness of this layer ranges from 27.9–103m while its average depth has been evaluated to be 63.02m. Also, its resistivity range and average value have been estimated to be 507–5612m and 3365.125Ωm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号