首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetrical Stokes profiles are produced if the photospheric magnetic and velocity fields are structured on scales smaller than the mean-free-path of the photons. Here we put forward a compact analytical expression for the radiative transfer equation in this case. Explicitly, micro-variations of the magnetic field strength and the velocity are considered. The existence of micro-structures might have serious implications on the techniques currently used to measure solar magnetic fields. For example, we show the failure of the relationship employed to calibrate magnetographs.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italy  相似文献   

2.
The development of effective iterative methods capable of accurately solving NLTE Stokes transfer problems is of considerable importance for the investigation of solar and stellar magnetic fields. After briefly indicating the iterative approach which is being presently pursued for the exact solution of such problems, the particular regime where polarization signals can only be due to the Zeeman effect is considered in some detail. By means of NLTE Stokes transfer calculations for a two-level atomic model it is first shown that the currently-used field-free approximation (Rees, 1969) cannot be safely applied in the presence of magnetic field gradients. Such gradients lead to changes in the shape and width of the line profiles and they can produce non-negligible effects on the atomic level populations and line source functions. A new approximate method is then proposed, which does not require the actual solution of the Stokes vector transfer equation and is practically as fast as the field-free one. This polarization-free approximation provides a fairly good account of the effects of homogeneous and inhomogeneous magnetic fields on the statistical equilibrium and is very easy to implement in any existing non-magnetic, multi-level transfer code.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italia  相似文献   

3.
This paper presents some numerical results relative to a solution, based on the density matrix formalism, of the non-LTE, polarized radiative transfer problem for a two-level atom. The results concern the atomic upper level population and alignment, and the emergent radiation Stokes profiles, for a plane-parallel, static, isothermal atmosphere embedded in a magnetic field of intermediate strength, such that the Zeeman splitting has to be taken into account in the line profile. Zeeman coherences are neglected, whereas magneto-optical effects are taken into account, resulting in a full 4×4 absorption matrix. Induced emission is neglected and complete frequency redistribution, in the rest and laboratory frames, is assumed. Pure Doppler absorption profile (gaussian shape) has also been assumed. The presentation of the results is preceded by a brief discussion of their accuracy and of the numerical difficulties that were met in the solution of the problem.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italia  相似文献   

4.
The main properties of the first- and second-order moments of polarized hydrogen lines, forming in the presence of stationary electric and magnetic fields, are reviewed. The analytical results presented here apply directly to the case of optically-thin emission lines in the LTE regime. Some applications of such results to electric- and magnetic-field diagnostics in (solar) plasmas are then briefly considered.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italy  相似文献   

5.
A method is presented to measure the magnetic field vector in prominences by means of the polarimetric observations in the D3 line of He obtained with the High Altitude Observatory Stokes polarimeter. The characteristics of the observed Stokes profiles are discussed. The theory of the Hanle effect is reformulated in the representation of the irreducible tensors of the density matrix, and is generalized to derive the circular polarization profiles across the spectral line in terms of the intensity and direction of the prominence magnetic field. The circular polarization profile so deduced can be employed to obtain useful information which adds to that carried by the linear polarization observations. A non-linear least-squares algorithm is proposed to derive the measurement of the magnetic field from the observations, and a consistency check is suggested to test the adequacy of the theoretical model to describe the physics of the He I atomic excitation in prominences.On leave from: Astrophysical Observatory of Arcetri, Largo E. Fermi, 5, 50125 Firenze, Italy.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Observations of a sunspot in the Civ line at 1548 Å formed in the transition region have been analyzed to obtain the time variations and/or mean values of the velocity, intensity, longitudinal magnetic field, and line width. Oscillations with periods between approximately 110 and 200 s are observed only over the umbra where the transition region magnetic field is highest and the line width is smallest. When periodic intensity variations occur at the same frequency as the velocity oscillations, the peak intensities occur slightly before the maximum upward motions. No periodic variations in the transition region magnetic field have been detected. Scatter diagrams are presented which show possible relationships between the flow velocity, emission line intensity, line width, and transition region magnetic field.  相似文献   

7.
The problem of production of flare hard X-rays by bremsstrahlung from hot thermal escaping electrons (Skrynnikov and Somov, 1982) in a chromospheric plasma is studied.The Landau kinetic equation is solved near the thermal source of energized electrons in a homogeneous magnetic tube to compute the anisotropic inhomogeneous distribution of the thermal escaping electrons.The intensity and polarization of hard X-rays is also computed and a comparison of theoretical results with observational data is made.On leave from: Istituto di Astronomia, Largo E, Fermi 5, I-50125 Firenze, Italy.  相似文献   

8.
The magnetic splitting peculiarities of the absorption lines in the sunspot spectrum are considered. The most common and typical of them is breaking of all Stokes parameter symmetry in regard to the line center. The possible reason of this effect is the macroscopic gas motion with inhomogeneous velocity. Computed contours are given for the line Fe i λ5250 Å with various combinations of magnetic and velocity fields. Magneto-optical effects within the line which are connected with the magnetic and velocity field inhomogeneity are discussed. The observation results are discussed for longitudinal magnetic field zero lines. These observations were carried out for the sunspot and photosphere in two spectral lines Fe i λλ 5250 and 5233 Å. In the sunspot the regular displacement of one zero line with respect to the other zero line takes place whereas in the photosphere the displacements are random. The possible reason of the regular displacement is the change of the magnetic field direction in the different optical layers wherein corresponding spectral lines are formed effectively. The connection between the zero line displacement of a longitudinal magnetic field and the crossover effect is discussed. The computation results are given which agree with observations and illustrate the above-mentioned relationship. The influence of the Stokes parameter asymmetry on the measured magnetic field signals is considered.  相似文献   

9.
The H velocity field at 0516 UT during the eruption of the X1.5/3B flare in the active region E58 N11 (Boulder 3106) on 1981 May 13, obtained with the horizontal solar spectrograph of Yunnan Observatory is given in this paper. A comparative analysis of the velocity field with the magnetic field shows that the velocity field is related to the gradient and neutral line of the magnetic field and the brightness of the flare maximum changes in the velocity field of ±15 km/s occurs at the location of greatest magnetic field gradient.

The neutral line of the magnetic field (h = 0) basically matches the zero velocity line (v = 0) between the two bright ribbons. But they do not match between the two bright knots where the filament is twisted and ascends. The spectral lines show the sloping morphology, from which we deduced the dynamical parameters of the twist of the rising filament.  相似文献   


10.
Antonucci  Ester  Duvall  Thomas L. 《Solar physics》1974,38(2):439-447
A green line intensity variation is associated with the interplanetary and photospheric magnetic sector structure. This effect depends on the solar cycle and occurs with the same amplitude in the latitude range 60° N–60° S. Extended longitudinal coronal structures are suggested, which indicate the existence of closed magnetic field lines over the neutral line, separating adjacent regions of opposite polarities on the photospheric surface.Supported by an ESRO/NASA fellowhip.On leave from Torino University, Italy; now at Istituto di Fisica, Universita di Torino, Italy.  相似文献   

11.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

12.
The time-dependent interaction of the granulation velocity field with a magnetic flux tube is investigated here. It is seen that when a magnetic field line is displaced normal to itself so as to simulate thebuffeting action of granules, a flow of gas is initiated along the field. By choosing a lateral velocity field which is consistent with observations of granules, it is found that the resulting gas motion is a downward flow with a velocity compatible with the observed downflow in isolated photospheric flux tubes. It is therefore proposed that the observed photospheric downflow is a manifestation of the interaction of granules with flux tubes.  相似文献   

13.
In this paper, we address the issue of finding velocity fields which conserve magnetic flux or at least magnetic fieldline connectivity. We start from the basic principles of flux and line conservation and present and discuss the criterion, given by Newcomb (1958), Stern (1966), and Vasyliunas (1972). In addition, we find a new formulation of the line-conserving velocity field by solving the system of partial differential equations which corresponds to Newcomb's criterion for line conservation. This velocity field is given by a correlation between the non-idealness, described by a generalized form of the Ohm's law and a general transporting velocity, which is fieldline conserving. Our considerations give additional insights into the discussion on violations of the frozen-in field concept which started recently with the papers by Baranov and Fahr (2003a,b). These authors analyzed a generalized form of Ohm's law, which is valid for the heliosphere and claimed that the transport velocity for the magnetic flux may be different from the plasma velocity. We can show that the non-idealness given in the paper by Baranov and Fahr could not change the magnetic topology and can therefore not be responsible for magnetic reconnection. But we found that it is in general not clear if the flux-conserving velocity field is identical to the plasma flow or to any species velocity field.  相似文献   

14.
We investigate the thermodynamical and magnetic properties of a “dark‐cored” fibril seen in the chromospheric Ca II IR line at 854.2 nm to determine the physical process behind its appearance. We analyse a time series of spectropolarimetric observations obtained in the Ca II IR line at 854.2 nm and the photospheric Fe I line at 630.25 nm. We simultaneously invert the spectra in both wavelength ranges with the SIR code to obtain the temperature and velocity stratification with height in the solar atmosphere and the magnetic field properties in the photosphere. The structure can be clearly traced in the line‐of‐sight (LOS) velocity and the temperature maps. It connects from a small pore with kG fields to a region with lower field strength. The flow velocity and the temperature indicate that the height of the structure increases with increasing distance from the inner footpoint. The Stokes V signal of 854.2 nm shows a Doppler‐shifted polarization signal with the same displacement as in the intensity profile, indicating that the supersonic flow seen in the LOS velocity is located within magnetized plasma. We conclude that the chromospheric dark‐cored fibril traces a siphon flow along magnetic field lines, driven by the gas pressure difference caused by the higher magnetic field strength at the inner footpoint. We suggest that fast flows guided by the magnetic field lead to the appearance of “dark‐cored” fibrils in intensity images. Although the observations included the determination of the polarization signal in the chromospheric Ca II IR line, the signal could not be analysed quantitatively due to the low S/N. Chromospheric polarimetry will thus require telescopes of larger aperture able to collect a sufficient number of photons for a reliable determination of polarization in deep and only weakly polarized spectral lines (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Reconnection X-winds: spin-down of low-mass protostars   总被引:1,自引:0,他引:1  
We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10–20 per cent of the break-up velocity during the embedded phase.  相似文献   

16.
史建魁 《天文学报》1999,40(1):76-82
对火星磁层中背阳面区来自电离层的O+离子沿磁力线的密度和通量密度分布进行了理论研究.设火星的磁场由内禀磁场和感应磁场相叠加而成,结合不同的内禀磁矩条件进行了计算.结果表明:(1)随着火心距离的增大,火星磁层中O+离子的密度和通量密度沿磁力线都呈现出下降趋势;(2)随着Z坐标的增大,火星磁层中O+离子的密度和通量密度先呈现出下降趋势,后又逐渐上升;(3)火星的内禀磁场越强,O+离子的密度和通量密度沿磁力线下降得越快;(4)在火星磁尾一定距离处,O+离子的密度和通量密度随磁矩的增大而减小.这样,可通过探测火星磁层中离子的密度和通量密度分布来确定火星内禀磁场的强弱  相似文献   

17.
Statistical properties of solar granulation in an active region on the solar surface from the photosphere to the lower chromosphere are studied. We use the values of the velocity, intensity, and magnetic field that were obtained at different heights in the solar atmosphere according to the observation data on the VTT telescope at Observatorio del Teide, Tenerife. The changes in the line??s parameters (central depth of the line, halfwidth, equivalent width, and central depth shift) and convective velocity are presented as functions of the value of the magnetic field. We propose a 16-column model of solar granulation depending on the direction of motion of convective elements and on the sign of contrast at two heights??in the continuous spectrum and in the highest layer (h = 650 km). We found that the magnetic field impedes the change in the sign and motion direction of convective elements.  相似文献   

18.
The determination of the radial velocity and the effective magnetic field strength for the peculiar A-type stars 53 Cam and γ Equ lad to the following results 53 Cam: The radial velocity shows a dependence on the excitation, resp. ionization potential in the way that evidently lines with higher excitation potential have higher radial velocity. We cannot explain this result with the rotator model without an essential modification of that. The amount and the time variation of the effective magnetic field agrees only approximately with that determined by BABCOCK. A secular variation may be indicated, but needs further confirmation. The effective magnetic field strength determined from the SiII-line λ = 4130.884 Å shows an essential smaller value than that by the other lines. The investigation of γ Equ yielded the following results: The best way to represent both the radial velocity and the effective magnetic field strength is a period of 1786 days given by STEINITZ and PYPER. We did not find a difference of the radial velocities derived from different lines and no line intensity variations. However, there seems to be observational evidence that short and obvious accidental variations of the radial velocity and effective magnetic field exist.  相似文献   

19.
Pulsars accelerate the charged particles moving along their magnetic field lines due to their rapidly spinning motion. Particles gain maximum energy from pulsars within the light cylinder when they are moving along the field lines perpendicular to the rotation velocity. In pulsars with non-aligned rotation and magnetic axes, the production of two intense and sharp pulses (main pulse and interpulse) separated by 180° longitude occur at the two regions near the light cylinder where the rotation velocity is perpendicular to the magnetic field. Since the radiating particles move radially along the relativistically compressed magnetic field lines, the observer in the stationary frame receives beamed and transversely compressed radiation pulse. Near the light cylinder position angle varies smoothly during pulsar rotation in a way as Radhakrishnan and Cook (1969) expect its variation near the magnetic pole, as the field lines experience relativistic compression in the direction of rotation. The motion of two charge species along the field lines produce orthogonal modes at each pulse longitude.  相似文献   

20.
Using the Unno-Beckers equations and the Rnnge-Kutta method with variable steplength, we calculated the formation in a magnetic field of the FeI λ 5324.19 line in the solar photosphere, sunspot penumbra and umbra, and determined various theoretical calibration parameters for the magnetic and radial velocity fields. These parameters for the transverse and velocity fields have good linearity and stability and adequate sensitivity, making the line very suitable for the study of solar active regions. When observing the transverse field, the filter should best be placed 0.10 – 0.11 A away from the line centre. The calibration is rather complicated when magneto-optical effects are considered. Temperature sensitivity effects of this line should not be serious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号