首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous analytic solutions to the problem of the consolidation of a deep clay stratum subjected to a surface loading, have been obtained for the assumed condition of a completely permeable upper surface. This may not be so in many applications, where the foundation causing the loading may be impermeable, and therefore only that part of the clay surface outside the loading is free to drain.In this paper a method is presented which may be used to obtain the time-settlement behaviour of a circular loading applied over an impermeable region of the surface of the clay. The solution technique involves representing the continuous values of fluid flow along the surface boundary as uniform blocks of flow. The solution is found in Laplace transform space and a numerical inversion technique is then used to obtain the time dependent solution.Two types of surface loading are examined; a completely uniform loading and a loading distribution which is approximately that of a rigid footing. For the uniform loading case, comparisons are made with previous solutions (permeable surface) and it is shown that the assumption of an impermeable loaded region leads to significant changes in the time-settlement behaviour of the loading.  相似文献   

2.
An approximate numerical method for the analysis of piled raft foundations is presented. The raft is modelled as a thin plate and the piles as interacting non-linear springs. Both the raft and the piles are interacting with the soil which is modelled as an elastic layer. Two sources of non-linearity are accounted for: (i) the unilateral contact at the raft–soil interface and (ii) the non-linear load–settlement relationship of the piles. Both theoretical solutions and experimental results are used to verify that, despite the approximations involved, the proposed method of analysis can provide satisfactory solutions in both linear and non-linear range. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
An approximate method, using a simplified soil model, for predicting the behaviour of raft foundations subjected to applied vertical forces and moments will be outlined. Results obtained for circular rafts of finite rigidity are compared with those obtained, from more rigorous solutions, by other authors. Satisfactory agreement is obtained for the surface settlements and raft bending moments over a wide range of soil inhomogeneity. Finally, the versatility of the method of analysis is illustrated for an unusual asymmetrical structure. Computed total and differential settlements are shown to be in reasonable agreement with measured values and those predicted by an independent plane strain finite element analysis.  相似文献   

4.
Thin highly permeable laminations have a significant influence on the rate of consolidation of many natural clays. Horne [1] presented analytical solutions for a particular type of problem. The range of solutions has been extended by the authors, who have used the more general finite element technique to solve consolidation problems of finely laminated clays under various geometry, load, and boundary conditions. Solutions are presented in graphical form to enable engineers to predict the rate of settlement for strip loads imposed on the surface of laminated clays. The effect of the laminations on the pore water pressure distribution, and the significant difference between a laminated (composite) material and an anisotropic material, are examined.  相似文献   

5.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Considering there is hardly any concerted effort to analyze the pile‐raft foundations under complex loads (combined with vertical loads, horizontal loads and moments), an analysis method is proposed in this paper to estimate the responses of pile‐raft foundations which are subjected to vertical loads, horizontal loads and moments in layered soils based on solutions for stresses and displacements in layered elastic half space. Pile to pile, pile to soil surface, soil surface to pile and soil surface to soil surface interactions are key ingredients for calculating the responses of pile‐raft foundations accurately. Those interactions are fully taken into account to estimate the responses of pile‐raft foundations subject to vertical loads, horizontal loads and moments in layered soils. The constraints of the raft on vertical movements, horizontal movements and rotations of the piles as well as the constraints of the raft on vertical movements and horizontal movements of the soils are considered to reflect the coupled effect on the raft. The method is verified through comparisons with the published methods and FEM. Then, the method is adopted to investigate the influence of soil stratigraphy on pile responses. The study shows that it is necessary to consider the soil non‐homogeneity when estimating the responses of pile‐raft foundations in layered soils, especially when estimating the horizontal responses of pile‐raft foundations. The horizontal loads and the moments have a significant impact on vertical responses of piles in pile‐raft foundations, while vertical loads have little influence on horizontal responses of piles in pile‐raft foundations in the cases of small deformations. The proposed method can provide a simple and useful tool for engineering design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an approximate method of numerical analysis of piled–raft foundations in which the raft is modelled as a thin plate and the piles as interacting springs of appropriate stiffness. Allowance is made for the development of limiting pressures below the raft and of the ultimate axial load capacity of the piles. Comparisons between this analysis and existing solutions verify that, despite the approximations involved, the analysis can provide solutions of adequate accuracy for the settlement and pile load distribution within a piled raft. Comparisons are also made with the results of a series of centrifuge tests and with measurements of the performance of a full-scale piled raft. In both cases, the analysis predicts very well the settlement and proportion of load carried by the piles.  相似文献   

8.
This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer‐element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length‐diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical method is developed in this paper for the analysis of the behaviour of a raft resting on a consolidating soil. The response of the raft under an applied loading is determined using the finite layer method for the soil and the finite element method for the raft. By considering deflection compatibility on the contact surface, the distribution of contact pressure is computed at various time steps. The settlement and bending moment in the raft is then evaluated by applying the calculated contact pressure back to the raft. It is shown that, in some cases, the maximum moment in the raft occurs during consolidation and that checking the final moment in the raft by use of elastic theory may not be sufficient.  相似文献   

10.
The paper has proposed a design method considering interaction effects for a piled raft foundation. In this method, the raft is considered as a plate supported by a group of piles and soil. The ultimate load capacity of the pile group is taken into account in calculating the settlement when the foundation is subjected to a large vertical external load. In addition, this method supports estimation of the nonlinear behaviour of the piled raft foundation by considering the nonlinear behaviour of the piles.A step-by-step procedure to apply the proposed method to calculate the settlement and distribution of the bending moment of the piled raft foundation is introduced. To verify the reliability of the proposed method, models of a 16-pile raft and a 9-pile raft with different pile lengths embedded in homogeneous silica sand were tested in a centrifuge and comparisons were made between the results of the proposed method, the results of centrifuge tests, and those of Plaxis 3D. Good agreement between centrifuge modelling and the proposed method is demonstrated, thus showing the potential of the proposed method.  相似文献   

11.
This paper considers the transient response of a pressurized long cylindrical cavity in an infinite poroelastic medium. To obtain transient solutions, Biot's equations for poroelastodynamics are specialized for this problem. A set of exact general solutions for radial displacement, stresses, pore pressure and discharge are derived in the Laplace transform space by using analytical techniques. Solutions are presented for three different types of prescribed transient radial pressures acting on the surface of a permeable as well as an impermeable cavity surface. Time domain solutions are obtained by inverting Laplace domain solutions using a reliable numerical scheme. A detailed parametric study is presented to illustrate the influence of poroelastic material parameters and hydraulic boundary conditions on the response of the medium. Comparisons are also presented with the corresponding ideal elastic solutions to portray the poroelastic effects. It is noted that the maximum radial displacement and hoop stress at the cavity surface are substantially higher than the classical static solutions and differ considerably from the transient elastic solutions. Time histories and radial variations of displacement, hoop stress, pore pressure and fluid discharge corresponding to a cavity in two representative poroelastic materials are also presented.  相似文献   

12.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
汪宏伟  纠永志  木林隆 《岩土力学》2012,33(Z1):205-210
提出一种多向荷载同时作用下的刚性桩筏基础简化计算方法,基于Mindlin解,分析桩顶面-桩顶面、桩顶面-土表面、土表面-土表面的相互作用关系。推导多向荷载下桩土体系柔度矩阵,得到刚性桩筏基础的受力和变形的关系,通过与有限元对比证明了文中方法的正确性,在此基础上对耦合荷载作用下的风机基础的受力和变形特性进行分析。研究表明,耦合荷载作用下风机基础将会产生竖向不均匀沉降,并会引起桩顶轴力的的巨大的差异。  相似文献   

14.
Similarity solutions are derived for wedge-shaped hydraulic fractures driven by a constant inlet pressure P0 into a permeable medium under a uniform confining stress σ. These results describe the seepage-dominated regime in which most of the injected fluid is lost into the permeable walls of the fracture; they complement previous results for the capacitance-dominated regime in which seepage is negligible. Fracture propagation velocity is obtained as an analytical function of fracture length, driving pressure, confining stress, material properties and a single separation constant or eigenvalue which is determined numerically. Self-similar profiles of pressure, opening displacement and fluid velocity along the fracture are presented, together with the self-similar isobars of the two-dimensional pressure field within the permeable medium. Comprehensive results are reported for laminar or turbulent flow of a constant-compressibility liquid or an ideal gas driven by overpressures (P0?σ)/σ ranging from 10?2 to 102.  相似文献   

15.
This paper presents a method of analysis for piled raft systems constructed in layered soils. The method presented takes account of the interactions of the raft, piles and soil without the cost of a full three-dimensional rigorous analysis. This is done by the use of finite layer methods for the analysis of the soil and finite element methods for the raft. Examples are provided in the paper for piled rafts constructed on layered soils, and results are presented for bending moments in the raft and loads in the piles.  相似文献   

16.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

17.
A multiphase model is proposed to describe the mechanical behaviour of geomaterials reinforced by linear inclusions. This macroscopic approach considers the reinforced soil or rock mass as the superposition of continuous media. Equations of motion and constitutive laws of the model are first derived. Its implementation in a finite element computer code is then detailed. A modified implicit algorithm for elastoplastic problems is proposed. The model and its implementation are fully validated for rock‐bolted tunnels (comparison with scale model experiments) and piled raft foundations (comparison with the classical ‘hybrid method’). The Messeturm case history is finally presented to assess the handiness of the approach for real structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This communication describes an approximate method for generalizing homogeneous, linearly elastic, subgrade type solutions of axial pile response to account for soil creep behaviour. The method is very simple to apply and can be used in conjunction with either analytical or numerical elastic solutions. Exact solutions for limiting cases and finite difference solutions in both space and time are presented to confirm that errors introduced by the approximations are small. Because of the theoretical basis of this approach it is anticipated that method can be used with other pile problems, lateral and axial, for both subgrade adn continuum idealizations. Methods for generalizing the results to more complex conditions such as non-homogeneity or time varying loads are given.  相似文献   

20.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile–soil–pile, pile–soil–raft and raft–soil–raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号