首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximate numerical method for the analysis of piled raft foundations is presented. The raft is modelled as a thin plate and the piles as interacting non-linear springs. Both the raft and the piles are interacting with the soil which is modelled as an elastic layer. Two sources of non-linearity are accounted for: (i) the unilateral contact at the raft–soil interface and (ii) the non-linear load–settlement relationship of the piles. Both theoretical solutions and experimental results are used to verify that, despite the approximations involved, the proposed method of analysis can provide satisfactory solutions in both linear and non-linear range. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
In a piled raft, the length and arrangement of piles has a significant effect on the stresses and deflections of the raft. The use of piles with different dimensions and properties below a raft is an innovative concept and can optimize the design of a piled raft. In this study, an integral equation method with a fictitious pile model was adopted to analyze the piled raft foundation with dissimilar piles. The Fredholm integral equations of the second kind were obtained for this problem. The loads shared by piles and subsoil, the load transfer, and the settlement of the piled raft were obtained using numerical calculation. The results from the present method were compared with those in the literature. An optimization technique was introduced to design piled rafts with dissimilar piles. The stiffening effect of piles on the surrounding soil is also discussed as compared the conventional interaction factor approach.  相似文献   

3.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The paper has proposed a design method considering interaction effects for a piled raft foundation. In this method, the raft is considered as a plate supported by a group of piles and soil. The ultimate load capacity of the pile group is taken into account in calculating the settlement when the foundation is subjected to a large vertical external load. In addition, this method supports estimation of the nonlinear behaviour of the piled raft foundation by considering the nonlinear behaviour of the piles.A step-by-step procedure to apply the proposed method to calculate the settlement and distribution of the bending moment of the piled raft foundation is introduced. To verify the reliability of the proposed method, models of a 16-pile raft and a 9-pile raft with different pile lengths embedded in homogeneous silica sand were tested in a centrifuge and comparisons were made between the results of the proposed method, the results of centrifuge tests, and those of Plaxis 3D. Good agreement between centrifuge modelling and the proposed method is demonstrated, thus showing the potential of the proposed method.  相似文献   

5.
The piled raft has proved to be an economical foundation type compared to conventional pile foundations. However, there is a reluctance to consider the use of piled rafts on soft clay because of concerns about excessive settlement and insufficient bearing capacity. Despite these reasons, applications of piled rafts on soft clay have been increased recently. Current analysis methods for piled rafts on soft clay, however, are insufficient, especially for calculating the overall bearing capacity of the piled raft. This study describes the three-dimensional behavior of a piled raft on soft clay based on a numerical study using a 3D finite element method. The analysis includes a pile–soil slip interface model. A series of numerical analyses was performed for various pile lengths and pile configurations for a square raft subjected to vertical loading. Relatively stiff soil properties and different loading types were also used for estimating the bearing behavior of the piled raft. Based on the results, the effect of pile–soil slip on the bearing behavior of a piled raft was investigated. Furthermore, the proportion of load sharing of the raft and piles at the ultimate state and the relationship between the settlement and overall factor of safety was evaluated. The results show that the use of a limited number of piles, strategically located, might improve both bearing capacity and the settlement performance of the raft.  相似文献   

6.
当前虽然已有考虑桩筏非线性的设计,但仍无人在此基础上,考虑上部结构。因此考虑上部结构,进一步认识其与桩筏基础非线性共同作用机理,优化桩筏基础设计,具有重要的现实意义。本文以子结构法凝聚上部结构的荷载及刚度,以平面壳体单元模拟筏板,按有限层法模拟桩土之间的弹性相互作用,用广义剪切位移法模拟桩的非线性工作性状,建立了一种考虑上部结构共同作用的桩筏基础非线性分析方法,并编制了分析程序。通过实例分析,探讨了上部结构与桩筏基础非线性共同作用的机理,研究了合理布桩方式,探讨了以差异沉降为目标的优化设计的可能途径。  相似文献   

7.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

8.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile–soil–pile, pile–soil–raft and raft–soil–raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Finite element simulations of the behavior of a piled raft foundation have been carried out using a multiphase model conceived as an improved homogenization approach. According to this model, the ground reinforced by a group of piles is treated as a homogeneous continuous medium. In this approach, no specific interface elements are necessary to account for the mechanical interaction between the piles and the ground: this interaction is described by means of two scalar parameters, one stiffness parameter and one which can easily be derived from the maximum ground‐pile friction. The implementation of the model into a finite element code provides an efficient tool for the analysis of the influence of the pile number or length on the settlement and bearing capacity of a square piled raft foundation and of the way the total applied load is shared between the raft and the piles. Results are compared with a standard 3D finite element analysis. The comparison highlights the fact that the proposed approach remains to be improved to account for tip resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A piled raft foundation comprises both piles and a pile cap that itself transmits load directly to the ground. The aim of such a foundation is to reduce the number of piles compared with a more conventional piled foundation where the bearing effect of the pile cap, or raft, is ignored. This paper describes a ‘hybrid’ approach for the analysis of piled raft foundations, based on a load transfer treatment of individual piles, together with elastic interaction between different piles and with the raft. The numerical analysis is used to evaluate a simple approximate method of estimating the overall response of the foundation from the response of the component parts. The method leads to estimates of the overall foundation stiffness, the proportion of load carried by the pile group and the raft, and an initial assessment of differential settlements. Parametric studies are presented showing the effect of factors such as raft stiffness and pile spacing, length and stiffness, and a worked example is included demonstrating the accuracy of the approximate design approach.  相似文献   

12.
竖向荷载作用下桩筏基础可视化模型试验研究   总被引:3,自引:0,他引:3  
郑刚  裴颖洁  刘双菊 《岩土力学》2008,29(11):2912-2918
进行了群桩基础可视化模型试验。在试验过程中对各级竖向荷载作用下群桩基础桩、土的变形采用高清晰数码相机拍摄了照片。通过对照片进行后处理分析,得到了桩、土的位移场,也对桩身轴力也进行了量测,在该基础上研究了群桩基础的变形性状和破坏模式,重点分析对比了桩间距和桩长对桩端土体沉降以及桩身侧摩阻力的影响。试验发现,桩距是影响桩土相对滑移量的主要因素,桩距越大,桩身与土的相对滑移量就越大,桩端刺入量也越大。在柔性筏基下,随桩距增加中桩的桩土相对滑移量可能会大于边桩。桩端刺入量是大桩距桩基础主要的沉降构成,以桩端刺入量为研究对象建立一套大桩距基础新的沉降计算理论,似乎值得进一步研究。桩顶向上刺入(可通过设置褥垫层、桩顶预留净空或设置可压缩垫块来实现)有利于桩间土的压密,减小桩端刺入量,甚至改变破坏模式。  相似文献   

13.
This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer‐element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length‐diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a simplified nonlinear solution for piled raft foundations in layered soils under vertical loading. Based on the elastic–plastic analysis of a single pile in a layered soil, the shielding effect between a receiver pile and the soil is taken into account to modify the conventional interaction factor between two piles. An approximate approach with the concept of the interaction factor is employed to study the nonlinear behavior of pile groups with a rigid cap. Considering the variation of soil properties, the solution to multilayered elastic materials is used to calculate the settlement of the soil. The interactions between pile–soil–raft are taken into account to determine the stiffness matrix of the piled raft. By solving the stiffness matrix equations, the settlement and the load shared by the piles and raft could be obtained. Compared with results of the available published literatures, the proposed solution provides reasonable results.  相似文献   

15.
徐林荣  王宏贵  左珅  刘维正 《岩土力学》2012,33(9):2605-2612
基于沉降控制设计理念,无砟轨道京沪高速铁路地基处理采用筏板+垫层+疏桩的方法,形成复合桩基以实现有效减少工后沉降和充分利用地基承载力的优化加固方案。为探索该新方法沉降控制机制,选用CFG桩开展了复合桩基现场试验研究,对复合桩基在高速铁路路基填筑、静置、预压卸载过程中的地基沉降变形、桩和桩间土土压力、筏板顶与底部压力进行了长期观测,分析了路基沉降变形、桩-土应力比和荷载分担比以及筏板的受力随填筑高度和固结时间的变化规律。研究表明:筏板+垫层+疏桩联合加固地基方案在初期充分发挥了桩间土承载作用,导致桩与桩间土产生差异沉降;随着垫层的调节作用,筏板可集中发挥桩体的承载能力及显著提高桩顶应力集中程度,地基土沉降主要发生在加固区范围内,从而揭示了复合桩基在路基荷载下的承载机制和变形特性。现场试验结果可为指导高速铁路CFG桩复合桩基设计参数的进一步优化提供试验依据。  相似文献   

16.
A piled raft foundation is a combined foundation, which is developed to utilize the load-carrying capabilities of both raft and piles. To obtain an optimum piled raft design, it is important to properly evaluate and consider the load-sharing behavior between the raft and piles, which changes according to the settlement level of the piled raft. In this study, 27 three-dimensional finite element models were analyzed to investigate the piled raft coefficient with linear and nonlinear load-settlement behaviors. The length of piles was varied between 10, 15, and 20 m. The spacing between pile centers was varied between 3D, 5D, and 7D, and the pile diameter was kept constant. The number of piles and the distance between the exterior piles and the edge of the raft were maintained at 9 and 1 m, respectively. The sand conditions varied between dense, medium, and loose. The results indicated that the piled raft coefficient increases when the load-settlement curve is linear and decreases when the load-settlement curve is nonlinear. The influence of the incremental increase in pile length on the piled raft coefficient is more pronounced in short piles than in longer piles. The raft thickness has a negligible effect on the piled raft coefficient.  相似文献   

17.
王伟  杨敏  上官士青 《岩土力学》2015,36(Z2):178-184
桩径优化是桩筏基础以差异沉降最小化为目标的基础优化分析的重要组成部分。基于桩筏基础通用分析方法,结合遗传算法提出了包含非线性约束条件的以差异沉降控制为目标的桩筏基础桩径优化分析模型,并给出了优化分析的实施步骤。通过示例说明了桩径优化的实施情况,对比给出了优化前后基础沉降、桩基荷载分布与筏板分担比、筏板弯矩和剪力结果。最后通过参量分析研究了筏板厚度、桩基参量和土体参量对最优桩径确定的影响程度,桩长和土体特性对桩径优化结果影响显著,而桩体材料特性和筏板厚度对桩径优化结果影响不大。  相似文献   

18.
In designing piled raft foundations, controlling the total and differential settlements as well as the induced bending moments of the raft is crucial. The majority of piled raft foundations have been designed by placing piles uniformly. In such a design method, the settlements of the piled rafts are likely to be large, which leads to an increase of the pile length and/or number of piles required to reduce the settlements. However, this increase does not satisfy the requirement for economical design. On the basis of a parametric study, this paper contributes a framework for considering an economical design methodology in which piles are placed more densely beneath the column positions when the piled raft is subjected to column loads. The analysis uses PLAXIS 3D software, and the validity of the parametric study is examined through the results of centrifuge model tests conducted by the authors. The study shows that the concentrated pile arrangement method can help to considerably reduce the total and differential settlements as well as the induced bending moments of the raft. Moreover, the effects of parameters, such as pile length, pile number, raft thickness and load types, on the piled raft behavior are investigated. This study can help practicing engineers choose pile and raft parameters in combination with the concentrated pile arrangement method to produce an economical design.  相似文献   

19.
汪宏伟  纠永志  木林隆 《岩土力学》2012,33(Z1):205-210
提出一种多向荷载同时作用下的刚性桩筏基础简化计算方法,基于Mindlin解,分析桩顶面-桩顶面、桩顶面-土表面、土表面-土表面的相互作用关系。推导多向荷载下桩土体系柔度矩阵,得到刚性桩筏基础的受力和变形的关系,通过与有限元对比证明了文中方法的正确性,在此基础上对耦合荷载作用下的风机基础的受力和变形特性进行分析。研究表明,耦合荷载作用下风机基础将会产生竖向不均匀沉降,并会引起桩顶轴力的的巨大的差异。  相似文献   

20.
The load distribution and deformation of piled raft foundations subjected to axial and lateral loads were investigated by a numerical analysis and field case studies. Special attention is given to the improved analytical method (YSPR) proposed by considering raft flexibility and soil nonlinearity. A load transfer approach using py, tz and qz curves is used for the analysis of piles. An analytical method of the soil–structure interaction is developed by taking into account the soil spring coupling effects based on the Filonenko-Borodich model. The proposed method has been verified by comparing the results with other numerical methods and field case studies on piled raft. Through comparative studies, it is found that the proposed method in the present study is in good agreement with general trend observed by field measurements and, thus, represents a significant improvement in the prediction of piled raft load sharing and settlement behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号