首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A step‐by‐step approximate procedure taking into consideration high‐frequency modes, usually neglected in the modal analysis of both classically and non‐classically damped structures, is presented. This procedure can be considered as an extension of traditional modal correction methods, like the mode‐acceleration method and the dynamic correction method, which are very effective for structural systems subjected to forcing functions described by analytical laws. The proposed procedure, herein called improved dynamic correction method, requires two steps. In the first step, the number of differential equations of motion are reduced and consequently solved by using the first few undamped mode‐shapes. In the second step, the errors due to modal truncation are reduced by correcting the dynamic response and solving a new set of differential equations, formally similar to the original differential equations of motion. The difference between the two groups of differential equations lies in the forcing vector, which is evaluated in such a way as to correct the effects of modal truncation on applied loads. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with an explicit numerical integration method for real‐time pseudo dynamic tests. The proposed method, termed the MPC‐SSP method, is suited to use in real‐time pseudo dynamic tests as no iteration steps are involved in each step of computation. A procedure for implementing the proposed method in real‐time pseudo dynamic tests is described in the paper. A state‐space approach is employed in this study to formulate the equations of motion of the system, which is advantageous in real‐time pseudo dynamic testing of structures with active control devices since most structural control problems are formulated in state space. A stability and accuracy analysis of the proposed method was performed based on linear elastic systems. Owing to an extrapolation scheme employed to predict the system's future response, the MPC‐SSP method is conditionally stable. To demonstrate the effectiveness of the MPC‐SSP method, a series of numerical simulations were performed and the performance of the MPC‐SSP method was compared with other pseudo dynamic testing methods including Explicit Newmark, Central Difference, Operator Splitting, and OS‐SSP methods based on both linear and non‐linear single‐degree‐of‐freedom systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A shift approach is presented for evaluating and interpreting the response of rigid‐perfectly plastic single‐degree‐of‐freedom systems to dynamic loading. Scaling laws for such systems are, as the term suggests, multiplicative in nature, relating peak dynamic response to products of key problem parameters such as linear spectral coordinates, force reduction coefficient and peak values of the excitation and its time derivatives. Contrary to classical laws, the proposed approach is additive, imposing a shift in the ordinates and the abscissa of the excitation function by means of a set of parameters uniquely related to the yielding resistance of the system. The dynamic response is then obtained by integrating the modified excitation function in a linear‐like manner within a particular yielding branch, for the nonlinearity is incorporated into the forcing term. The mathematical validity of the approach is demonstrated analytically and its importance is highlighted for systems with symmetric yielding resistance subjected to near‐fault earthquake motions. The modified excitation function may be discontinuous between different yielding branches and relates uniquely to the development of plastic deformation. It is thereby referred to as Plastic Input Motion (PIM). It is shown that the ordinates and the duration of this function may be significantly (yet not necessarily) smaller than those of the original ground motion depending on yield strength. The relationship of the proposed approach to the existing methods and parameters of earthquake engineering such as Newmark's sliding block and relative ground acceleration, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
To assess the post-earthquake seismic safety of buildings, it is crucial to predict seismic response, and it is necessary to set the appropriate physical parameters of the response analysis model. Numerous methods have been proposed to identify physical parameters. However, most of them are limited to linear systems, and previous researches on nonlinear systems have difficulties in practical applications. In this paper, a nonlinear response analysis model is identified for a full-scale ten-story reinforced concrete building with the degrading tri-linear stiffness model by the modal iterative error correction (MIEC) method, and the accuracy of this technique is discussed by comparing with the shaking table test.  相似文献   

6.
医用计算机断层扫描成像系统中,X射线与物体相互作用产生的康普顿散射光子严重影响了图像质量,尤其在锥形束计算机断层扫描和多层探测器系统中。目前已有许多散射伪影校正方法,归纳为3类:硬件校正、软件校正、软硬件混合校正方法,但近年随着计算机计算能力的提高以及深度学习在医学图像处理领域的发展,出现了一些新的散射校正方法。本文首先介绍传统校正方法;然后详细介绍基于深度学习方法进行散射伪影校正,并将其分为基于图像域和基于投影域的深度学习方法,以及对不同的深度学习网络在散射伪影校正中的应用进行讨论;最后展望深度学习在多源计算机断层扫描技术中的应用前景。   相似文献   

7.
An efficient computational technique is presented for the dynamic analysis of large linear structural systems with local non-linearities. The earthquake response evaluation for many practical structures belongs to this class of problems. The technique provides a rational approach to the earthquake-resistant design of structure-foundation systems with predetermined non-linearities occurring along the structure-foundation interface. Various possibilities for base isolation systems are naturally fitted within the proposed framework. In particular, we address uplifting of the structure as a natural base isolation concept. We use the dynamic substructuring technique and an efficient numerical algorithm which accommodates non-proportional damping as a consistent way to reduce significantly the computational effort, which is in sharp contrast to the vast majority of ad-hoc simplified models used for the same purpose. A numerical example which demonstrates the vibration isolation effect when the uplifting of the concrete gravity dam occurs is also presented.  相似文献   

8.
随着地下空间大规模开发利用,地震灾害对其造成的潜在威胁不容忽视。基于《城市轨道交通结构抗震设计规范(GB50909-2014)》和《地下铁道建筑结构抗震设计规范(DG/TJ08-2064-2009)》建议的分析方法,选取惯性力法、反应位移法(国家规范法、上海规范法)、动力时程方法(线弹性方法、等效线性化方法)三类共5种计算方法,以典型两层双柱三跨地铁车站结构为分析对象进行地震反应的对比验算,对上述计算方法的适应性进行评价。分析结果表明,与动力时程方法相比较,惯性力法计算得到的侧墙剪力值偏大,中柱结果较为接近;对于反应位移法,国家规范方法和上海规范方法的计算模型略有不同,但两者计算结果基本相近,其中土体强制位移、集中地基弹簧、土体动剪切模量等参数取值对计算结果影响显著;对于动力时程方法,线弹性方法和等效线性化方法的结果较为接近,且变化趋势相同。  相似文献   

9.
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one-to-one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.  相似文献   

10.
The implicit dissipative generalized‐ α method is analyzed using discrete control theory. Based on this analysis, a one‐parameter family of explicit direct integration algorithms with controllable numerical energy dissipation, referred to as the explicit KR‐α method, is developed for linear and nonlinear structural dynamic numerical analysis applications. Stability, numerical dispersion, and energy dissipation characteristics of the proposed algorithms are studied. It is shown that the algorithms are unconditionally stable for linear elastic and stiffness softening‐type nonlinear systems, where the latter indicates a reduction in post yield stiffness in the force–deformation response. The amount of numerical damping is controlled by a single parameter, which provides a measure of the numerical energy dissipation at higher frequencies. Thus, for a specific value of this parameter, the resulting algorithm is shown to produce no numerical energy dissipation. Furthermore, it is shown that the influence of the numerical damping on the lower mode response is negligible. It is further shown that the numerical dispersion and energy dissipation characteristics of the proposed explicit algorithms are the same as that of the implicit generalized‐ α method. A numerical example is presented to demonstrate the potential of the proposed algorithms in reducing participation of undesired higher modes by using numerical energy dissipation to damp out these modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Practical methods for the probability‐based seismic assessment of structures make use of estimates of demands produced by earthquakes of different intensities. The uncertainties associated with these estimates are highly dependent on the variable adopted as the intensity measure (IM, e.g., PGA, spectral acceleration, etc.). This generates the need to compare the efficiency of an originally adopted IMwith that of a new candidate. This implies comparing the dispersion of the demand measure (DM, e.g., maximum interstorey drift ratio, ductility demand, etc.) conditional to each of the two IMs. In order to obtain the demand estimates in a conventional way, a full set of dynamic response analyses should be performed for each IM under scrutiny, i.e., multiple records scaled at several fixed values of each IM. The procedure developed here serves to accelerate this comparison avoiding the effort required to evaluate the dynamic responses of the structure for all the ground motion time histories considered every time that a new IM is adopted. For this purpose, use is made of available results of analyses performed for a different (i.e., the original) IM. Two methods are proposed: the direct method involves performing a regression of the results obtained from the original analyses, taking the candidate IM as the independent variable. The indirect method involves rebuilding the probability density function of the DM given a defined value of the candidate IM by means of the total probability theorem, using the results of the original analyses and certain data relating the two IMs. The proposed methods have been tested by application to several SDOF systems with different periods and different cyclic‐response backbone curves. The conditions affecting their approximation are explored, and some criteria to improve them are identified. The procedure can also be used to determine the optimum value of a parameter to be used in a parameter‐based IM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Traditional nonlinear static methods, e.g. the original version of the N2 method implemented in Eurocode 8, are not always effective in the assessment of asymmetric structures because of the errors committed in the evaluation of the torsional response. To overcome this shortcoming, two methods have recently been suggested by Kreslin and Fajfar (Bull Earthquake Eng 10(2):695–715, 2012) and Bosco et al. (Earthq Eng Struct Dyn 41:1751–1773, 2012). In particular, the method proposed by Kreslin and Fajfar adjusts the results of the nonlinear static analysis by means of those of a standard modal response spectrum analysis. In the method proposed by Bosco et al., the researchers suggested the use of two nonlinear static analyses characterized by lateral forces applied to different points of the deck. In this paper, the two improved nonlinear static methods and the original N2 method are applied to predict the maximum dynamic response of single- and multi-storey systems subjected to artificial and recorded accelerograms. The results highlight that the improved nonlinear static methods provide estimates which are more accurate than those of the original N2 method. Further, the comparison of the results identifies the range of the structural properties within which the original N2 method is still reliable and the range within which one of the two improved methods should be preferred.  相似文献   

13.
Calibration of dynamic analysis methods from field test data   总被引:3,自引:0,他引:3  
In view of the heterogeneity of natural soil deposits and approximations made in analysis methods, in situ methods of determining soil parameters are highly desirable. The problem of interest here is the nonlinear dynamic behavior of pile foundations. It is shown in this paper that soil parameters needed for simplified dynamic analysis of a single pile may be back-calculated from the dynamic response of the pile measured in the field. A pile was excited by applying a large horizontal dynamic force at the pile-head level, and the response measured. In this paper, two different (simplified) methods of modeling the dynamic response of the pile are considered. One of the methods is based on the Winkler foundation approach, with the spring constant characterized by the so-called nonlinear py springs. The second method is based on the equivalent-linear finite element approach, with the nonlinearity of shear modulus and damping accounted for by employing the so-called degradation relationships. In the latter, the effect of interface nonlinearity is also considered. Starting with best estimates of soil parameters, the experimental data on the response of pile is used to fine-tune the values of the parameters, and thereby, to estimate parameters that are representative of in situ soil conditions.  相似文献   

14.
本文基于可信概率水准的破坏性强震作用,针对小湾高拱坝进行了考虑坝体材料非线性的拱坝地震反应分析。在分析模型中,同时考虑了无约束域地震能量辐射效应和近域地基材料非均匀性的影响。为了实现非线性条件下的静、动力组合分析,利用显式有限元结合修正的黏弹性人工边界的开放系统时域静、动力统一分析方法进行了求解,对在自重作用下的初始静力解计算采用了动力松弛技术。  相似文献   

15.
This study proposes a real-time error correction method for the forecasted water stage using a combination of forecast errors estimated by the time series models, AR(1), AR(2), MA(1) and MA(2), and the average deviation model to update the water stage forecast during rainstorm events. During flood forecasting and warning operations, the proposed real-time error correction method takes advantage of being individually and continuously implemented and the results not being updated to the hydrological model and hydraulic routings so as to save computational time by recalibrating the parameters of the proposed methods with real-time observation. For model validation, the current study adopts the observed and forecasted data on a severe typhoon, Morakot, collected at eight water level gauges in Southern Taiwan and provided by the flood forecast system FEWS_Taiwan, which is linked with the reliable quantitative precipitation forecast (QPF) at 3 h of lead time provided by the Center Weather Bureau in Taiwan, as the model validation. The results of numerical experiments indicate that the proposed real-time error correction method can effectively reduce the errors of forecasted water stages at the 1-, 2-, and 3-h lead time and so enhance the reliability of forecast information issued by the FEWS_Taiwan. By means of real-time estimating potential forecast error, the uncertainties in hydrology, modules as well as associated parameters, and physiographical features of the river can be reduced.  相似文献   

16.
This paper reviews the methods of correcting the frequency response of short-period seismometers and geophones, i.e., the multiplication of the transfer sensor functions by the transfer function of the secondorder correction filter and the provision of a considerable attenuation in the oscillating system (h = 5–10) followed by correcting the frequency response with the first-order filter. The correction device circuit developed by the authors for expanding the frequency range of the GS-20DX geophone has been described. The proposed method has been proved to be effective according to the laboratory tests of the geophone with the frequency response correction according to this circuit.  相似文献   

17.
The paper investigates the influence of design procedures on the seismic response of multi-storey asymmetric buildings. To this end, some structures are designed according to methods based on either static or modal analysis, with or without design eccentricities. The seismic response of these systems is determined by means of inelastic dynamic analyses and the design is thoroughly examined in order to explain the results of the dynamic analyses. Attention is basically focused on the ability of design methods to prevent asymmetric buildings from experiencing ductility demands much larger than those of the corresponding torsionally balanced systems. Numerical analyses underline that while design procedures based on either static or modal analysis are suitable for the design of torsionally rigid structures only those based on modal analysis lead to the satisfactory performance of torsionally flexible buildings. Furthermore, the study highlights the qualities of a design method proposed by the Authors. Its application does not require any explicit calculation of design eccentricities and leads to proper seismic response of both torsionally rigid and flexible asymmetric buildings.  相似文献   

18.
采用与传统频域法相反的思路,提出一种内蕴基线漂移校正且匹配目标反应谱的人工地震波直接拟合新方法。该方法首先构造非平稳位移时程表达式,进而求导得到速度、加速度时程表达式,由各表达式满足的归零条件确定相关的包络函数;其次,结合单自由度系统谐波响应的解析式,将匹配目标反应谱的拟合问题转化为关于待求幅值谱的非线性方程组;最后,结合高效的非线性方程迭代算法给出自然满足归零条件的加速度、速度及位移时程。分别以Rg1.60标准谱、某核岛楼层谱和《建筑抗震设计规范》中的设计谱为拟合算例验证所提方法的效率和精度。所提方法可成为人工地震波快速拟合的新途径。  相似文献   

19.
An iterative solution method is presented and illustrated to analyse the dynamic response of bridge–vehicle systems. The method consists in dividing the whole system into 2 subsystems at the interface of the bridge and vehicles; these 2 subsystems are solved separately; their compatibility at the interface is achieved by an iterative procedure with under-relaxation or with Aitken acceleration. The characteristics of this method are explained on a simplified system with 2 degrees of freedom (DOF). The numerical results for a simple example demonstrate the high performances of the proposed method: good convergence rate and high accuracy. Finally, the method is applied to a practical example: the linear dynamic response of the Yangtze-River Bridge at Wuhan under a moving train with 2 locomotives and 4 freight cars. The efficiency is attained because neither formation nor factorisation of the coefficient matrices for the equations of the system are needed at every time step in linear analysis. The Aitken acceleration technique is more efficient in systems with multi-degrees of freedom than the relaxation technique. The proposed method will be even more efficient in non-linear dynamic response because, in this case, the iterations are necessary whether the system is solved as a whole or not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号