首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

2.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

3.
In support of their ‘glaciomarine’ model for the deglaciation of the Irish Sea basin, Eyles and McCabe cited the occurrence of distal glaciomarine mud drapes onshore in the Isles of Scilly and North Devon, and of arctic beach‐face gravels and sands around the shores of the Celtic Sea. Glacial and sea‐level data from the southern part of the Irish Sea in the terminal zone of the ice stream and the adjacent continental slope are reviewed here to test this aspect of the model. The suggestion that the glacial sequences of both the Isles of Scilly and Fremington in North Devon are glaciomarine mud drapes is rejected. An actively calving tidewater margin only occurred early in the deglacial sequence close to the terminal zone in the south‐central Celtic Sea. Relative sea‐levels were lower, and therefore glacio‐isostatic depression less, than envisaged in the glaciomarine model. Geochronological, sedimentological and biostratigraphical data indicate that the raised beach sequences around the shores of the Celtic Sea and English Channel were deposited at, or during regression soon after, interglacial eustatic highstands. Evidence for ice‐rafting at a time of high relative sea‐levels is restricted to a phase(s) earlier than the Late Devensian. These data indicate that the raised beach sequences have no bearing on the style of Irish Sea deglaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

5.
Glacial lineations on a bank area and a coastal lowland, both bordering the Norwegian Channel, are studied with regard to morphology and distribution by means of side-scan sonar data, detailed digital maps and fieldwork. Their genesis and age are further elucidated through stratigraphic and sedimentologic information from excavations in one typical coast-parallel drumlin. Four excavated sections revealed four lithologic units: Prodeltaic glaciomarine sand, glaciofluvial gravel, glaciomarine diamicton and deformation till. After Middle Weichselian delta progradation, glaciomarine diamicton was deposited and later subglacially reworked by a northwards flowing glacier. The two upper diamictons form the main volume of the ridge, which is interpreted as a drumlin, and imply a reinterpretation of the Jæren part of the so-called Lista moraine. Preconsolidation of glaciomarine diamicton suggests a maximum ice thickness of 500 m during drumlin formation, indicating an ice surface slope of 1 m/km. The occurrence of sediments that provided low basal shear stresses, and the orientation of drumlins and megaflutes indicating ice confluence both point to high glacier flow velocities and suggest that an ice stream, rather than a slower moving part of the ice sheet, occupied the Norwegian Channel during the Late Weichselian maximum. Deformation till overlying, more or less, undeformed glaciomarine diamicton suggests that high glacier velocities during periods of low driving stresses were possible due to a subglacial deformable layer.  相似文献   

6.
Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenland ice sheets during the last glaciation. This paper focuses on the events and processes leading to the opening of the strait and the environmental response to establishment of the Arctic‐Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon‐dated cores 2001LSSL‐0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with ΔR = 220±20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice‐proximal (red/grey laminated, ice‐proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice‐rafted debris) to ice‐distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. We hypothesize that a distinct IRD layer deposited between 9.3 and 9 (9.4–8.9 1σ) cal. ka BP marks the break‐up of ice in Kennedy Channel resulting in the opening of Nares Strait as an Arctic‐Atlantic throughflow. Overlying foraminiferal assemblages indicate enhanced marine productivity consistent with entry of nutrient‐rich Arctic Surface Water. A pronounced rise in agglutinated foraminifers and sand‐sized diatoms, and loss of detrital calcite characterize the uppermost bioturbated mud, which was deposited after 4.8 (3.67–5.55 1σ) cal. ka BP. The timing of the transition is poorly resolved as it coincides with the slow sedimentation rates that ensued after the ice margins retreated onto land.  相似文献   

7.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The coastline of County Down includes sites that are pivotal to understanding the history of the last glaciation of the northern Irish Sea Basin in relation to relative sea level and regional glacial readvances. The cliff sections display evidence that has been used to underpin controversial models of glaciomarine sedimentation in isostatically-depressed basins followed by emergent marine and littoral environments. They also provide crucial evidence claimed to constrain millennial-scale ice sheet oscillations associated with uniquely large and rapid sea-level fluctuations. This paper reviews previous work and reports new findings that generally supports the ‘terrestrial’ model of glaciation, involving subglacial accretion and deformation of sediment beneath grounded ice. Deep troughs were incised into the till sheet during a post Late Glacial Maximum draw-down of ice into the Irish Sea Basin. Ice retreat was accompanied by glaciomarine accretion of mud in the troughs during a period of high relative sea level. The trough-fills were over-ridden, compacted, deformed and truncated during a glacial re-advance that is correlated with the Clogher Head Readvance. Grounding-line retreat accompanied by rapid subaqueous ice-proximal sedimentation preserved a widespread subglacial stone pavement. Raised beach gravels cap the sequence. The evidence supports an uninterrupted fall in relative sea level from c. 30?m that is consistent with sea level curves predicted by current glacio-isostatic adjustment modelling. Critical evidence previously cited in support of subaerial dissection of the troughs, and hence rapid fall and rise in relative sea level prior to the deposition of the glaciomarine muds, is not justified.  相似文献   

9.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Models of glacio‐hydroisostatic sea‐level change have been published for the British Isles that are broadly consistent with the observational evidence, as well as with glaciological constraints. It has been argued, however, that the models fail to represent sea‐level change along the Irish Sea margins and in southern Ireland for the post‐deglaciation period. The argument rests on the interpretation of the depositional environment of the elevated ‘Irish Sea Drift’ on both sides of the Irish Sea: whether this is terrestrial or glaciomarine. The isostatic models for the British Isles are consistent with the former interpretation in that sea‐levels on either side of the Irish Sea, south of about the Isle of Man, are not predicted to have risen above present sea‐level at any time since the deglaciation of the Irish Sea. This implies that ice over both the Irish Sea and Ireland was relatively thin (ca. 600–700 m over Ireland). If the glaciomarine interpretation of the elevated Irish Sea Drift is correct, then the maximum ice thickness over central and southern Ireland would have to reach 2000 m, exceeding that over Scotland. Furthermore, for the resulting sea‐level change to be consistent with the Holocene evidence, this thick ice sheet could not have extended to the eastern side of the Irish Sea. Nor could it have been very thick at its northern and western limits. If such an ice model is extreme and incompatible with glaciological observations then the alternative is to accept the interpretation of the Irish Sea Drift as terrestrial in origin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Southwestern Barents Sea sediments contain important information on Lateglacial and Holocene environmental development of the area, i.e. sediment provenance characteristics related to ice‐flow patterns and ice drifting from different regional sectors. In this study, we present investigations of clay, heavy minerals, and ice‐rafted debris from three sediment cores obtained from the SW Barents Sea. The sediments studied are subglacial/glaciomarine to marine in origin. The core sequences were divided into three lithostratigraphical units. The lowest, Unit 3, consists of laminated glaciomarine sediments related to regional deglaciation. The overlying Unit 2 is a diamicton, dominated by mud and oversized clasts. Unit 2 reflects a more ice‐proximal glaciomarine sedimentary environment or even a subglacial depositional environment; its deposition may indicate a glacial re‐advance or stillstand during an overall retreat. The uppermost Unit 1 consists of Holocene marine sediments and current‐reworked sedimentary material with a relatively high carbonate content. A significant proportion of the sedimentary material could be derived from Svalbard and transported by sea ice or icebergs to the Barents Sea during the late deglacial phase. The Fennoscandian sources and local Mesozoic strata from the bottom of the Barents Sea are the likely provenances of sediments deposited during the deglacial and ice re‐advance phases. Bottom currents and sea‐ice transport were the main mechanisms influencing sedimentation during the Holocene. Our results indicate that the provenance areas can be reliably related to certain ice‐flow sectors and transport mechanisms in the deglaciated Barents Sea.  相似文献   

12.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Knight, J. 2010: Subglacial processes and drumlin formation in a confined bedrock valley, northwest Ireland. Boreas, 10.1111/j.1502‐3885.2010.00182.x. ISSN 0300‐9483. Subglacial processes beneath the Late Weichselian ice sheet in northwest Ireland are deduced from sediments and structures within drumlins in a bedrock valley at Loughros Beg, County Donegal. Here, a glacially smoothed bedrock surface underlies the drumlins, which are composed on their up‐ice side of stacked, angular rafts of local bedrock. Overlying and down‐ice from these rafts are down‐ice‐dipping beds of massive to bedded diamicton that contain sand and gravel interbeds. In a down‐ice direction the diamicton matrix coarsens and the beds become laterally transitional to water‐sorted gravels. The down‐ice end of one drumlin shows a concentrically bedded stratified gravel core aligned parallel to ice flow and resembling the internal structure of an esker. With distance away from this core, the gravels become more poorly sorted with an increase in matrix content, and are transitional to massive to stratified diamicton. A four‐stage model describes the formation of drumlins in this sediment‐poor setting. The sediments that are located directly above the bedrock represent deposition in a semi‐enclosed subglacial cavity. A trigger for this process was the formation of subglacial relief by the thrusting up of bedrock rafts, which created the leeside cavity. Subsequent sediment deposition into this cavity represents a form of feedback (self‐regulation), which may be a typical characteristic of subglacial processes in sediment‐poor settings.  相似文献   

14.
通过详细测制西藏申扎县扎扛-木纠错石炭二叠系剖面,查明了拉嘎组的岩石类型、组合及沉积环境。申扎地区的拉嘎组是以暗色粉砂岩、泥岩等细碎屑岩背景下,发育若干板状、长透镜状及透镜状粗碎屑岩为特征。大部分粗碎屑岩及部分细碎屑岩的分选及磨圆很差,成熟度极低,岩性显示为杂砾岩、杂砂岩,局部地区见有花岗岩漂砾。研究认为,拉嘎组形成于冰缘解冻并后退状态下的近岸冰海沉积环境,其沉积相类型可以分为分支水道与间湾、水下冰水扇、冰碛物与冰筏、滨岸与内陆棚。鉴于其时代可能为早二叠世Sakmarian期,因此,拉嘎组可能是晚古生代冰期消融的产物。拉嘎组沉积相的识别分析对拉萨地块晚古生代的古环境和古地理有重要意义。  相似文献   

15.
Ice-distal Upper Miocene marine strata from inland Antarctica   总被引:2,自引:0,他引:2  
ABSTRACT Glacimarine strata of the Battye Glacier Formation (≈ 130 m thick), Pagodroma Group, exposed in the Amery Oasis of East Antarctica, provide a record of Late Miocene palaeoenvironmental conditions in an ice‐distal setting. The formation overlies the Amery Erosion Surface (≈ 300 m to ≈ 270 m above sea level) that formed during an advance of the Lambert Glacier into Prydz Bay (ODP Site 739), at least 750 km further north than today. Two lithological members: a grey and muddier Lower Member and a brown, sand‐rich Upper Member, reflect variation in proximity to the terminus of the Lambert Glacier. Ice‐distal, glacimarine, diatom‐bearing mud (up to 12% biogenic silica) and in situ articulated molluscs occur in the Lower Member. The Battye Glacier Formation is significant because of its inland location, which indicates that ice‐distal marine conditions existed 250 km inland from the current Amery Ice Shelf edge. Similar Neogene strata are known on land only from the Pliocene Sørsdal Formation in the Vestfold Hills, near the Antarctic coast. Three stratigraphic intervals of diatom‐bearing mud are recognized from glacially reworked clasts and from in situ strata informally referred to as the McLeod Beds and ‘Bed A’. The diatom‐bearing mud also contains sponge spicules and minor silicoflagellates and ebridians. Marine diatom biostratigraphy constrains the age of the beds to between 10·7 and 9·0 Ma (late Miocene). Abundant benthic diatoms suggest deposition within shallow euphotic waters. The high abundance of intercalary valves of Eucampia antarctica from an interval of the McLeod Beds suggests that there was less winter sea‐ice than in Prydz Bay today. It is unlikely that sea‐ice was perennial because the presence of Thalassionema spp. and Stellarima stellaris (Roper) Hasle et Sims suggests that summer sea‐surface temperatures were too warm (> 0°C and > 3°C respectively). The palaeoclimate at the time of deposition appears to have been analogous to that in modern fjords of East Greenland (e.g. Kangerdlugssuaq Fjord), which is consistent with the depositional model proposed previously for the Pagodroma Group. The three diatom‐bearing mud intervals were deposited in the Amery Oasis, ≈ 250 km inland of the current Amery Ice Shelf edge, when the East Antarctic Ice Sheet was reduced in size relative to today.  相似文献   

16.
Remains identified as those of a woolly mammoth (Mammuthus primigenius) dated at 12,200 ± 55 14C yr B.P. were recovered while excavating in a complex sequence of glaciomarine sediments in Scarborough, Maine, USA. The mammoth was found in the top meter of a fossiliferous unit of mud and sand laminites. These sediments were deposited during a marine regressive phase following the transgression that accompanied northward retreat of the margin of the Laurentide ice sheet. A Portlandia arctica valve from the underlying transgressive unit provides a minimum age of 14,820 ± 105 14C yr B.P. for local deglaciation. The mammoth, an adult female, died in midwinter with no evidence of human involvement. Tusk growth rates and oxygen-isotope variation over the last few years of life record low seasonality. The mammoth was transported to the site as a partial carcass by the late-glacial proto-Saco River. It sank in a near-shore setting, was subjected to additional disarticulation and scattering of elements, and was finally buried in sediments reworked by the shallowing sea.  相似文献   

17.
Quaternary sediments along a profile crossing the southern part of the Jæren escarpment, southwestern Norway, have been investigated with regard to their glacial history and sea-level variations. Deposits from at least three glaciations and two ice-free periods between Oxygen Isotope Stage 6 and the Late Weichselian have been identified. Subglacial till directly overlain by a glaciomarine regressional succession indicates a deglaciation, and amino acid ratios in Elphidium excavatum between 0.083 and 0.118 date this event to Oxygen Isotope Stage 6. Sea-level dropped from 130 to below 110 m a.s.l. Subsequently, a short-lived ice advance deposited a marginal moraine and a sandur locally on the escarpment. Stratigraphical position and luminescence dates around 148 ka BP suggest deposition during the final stage 6 deglaciation. A Late Weichselian till covers most of the surface of Jæren. In addition to a well documented westerly ice flow, glaciotectonic indications of ice flow towards the north have been found. Ice flow directions and a hiatus between Oxygen Isotope Stage 6 and the Weichselian indicate enhanced erosion along the escarpment and the influence of a Norwegian Channel ice-stream. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The following events have been identified from a complex sequence of Midlandian (Devensian) sediments recently exposed at Aghnadarragh, County Antrim: (1) A lower till interpreted as Early Midlandian was deposited by a major lowland ice sheet which moved south-eastwards from central Ulster across the Lough Neagh depression. (2) Deglacial conditions were followed by a periglacial phase characterised by ice-wedge growth and sedimentation by gravelly debris flows. The latter contain the oldest known remains of Mammuthus primigenius in Ireland. (3) An Early Midlandian interstadial is represented by a woody detritus peat, with evidence of Betula, Pinuos and Picea woodlands and a rich beetle fauna. Wood from this horizon has been shown to be beyond the range of radiocarbon dating (>48 180 BP). (4) Interstadial conditions were succeeded by a cold, non-glacial phase dominated by in-channel gravelly flows and deposition of organic muds which contain plant and insect fossils. These horizons are older than 46 850 BP. (5) An upper, non-drumlinised till was deposited during the Late-Midlandian by a major lowland ice sheet which moved generally eastwards across the Lough Neagh Lowlands from central Ulster. This glaciation probably reached its maximum at ca 20–24 ka. (6) Drumlin formation occurred in the Lough Neagh Lowlands towards the end of the Late-Midlandian. The limiting moraines are dated to 17 ka. The lower till at Aghnadarragh is the first positive record of a major lowland ice sheet in Ireland during the early part of the last cold stage. The Early Midlandian interstadial peats have not been documented elsewhere in Ireland and correlate broadly with the Chelford Interstadial complex of the English Midlands. Related exposures elsewhere in Ulster confirm that the middle part of the last cold stage was free of major lowland ice masses but deposits of this period are absent from Aghnadarragh.  相似文献   

19.
The Woodstock drumlin field was formed about 15,000 years ago during the Port Bruce Stadial of the Late Wisconsinan. It consists of three sections, each composed of texturally different till sheets (Tavistock A, B and C Tills) deposited during marginal oscillations of the Huron ice lobe advancing from the Lake Huron depression. A statistically significant relation between till texture and drumlin morphometry has been determined. Features composed of clayey-silt Tavistock A Till are smaller and more elongate than those built up of sandy-silt Tavistock C Till, which reflects a different susceptibility of the drumlin deposits to the moulding action of the glacier. Based on the field data it is suggested that the drumlinizing glacier was temperate all the way up to its margin and basal sliding occurred also at its outermost peripheries. In the drumlin region immediately behind end moraines the shear strength/shear stress ratio was around I and increased progressively in the upstream direction. In the proposed mechanism of drumlin formation the key factor is pore water dissipation (1) through the permeable substratum and (2) into dilatantly expanding granular deposits, both resulting in the necessary increase of the basal till strength.  相似文献   

20.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号