首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en-route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0–200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.  相似文献   

2.
This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2?>?0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.  相似文献   

3.
A total of 42 km of high-resolution seismic reflection and bathymetric data were collected for the first time to document stratigraphic and structural features of the uppermost 5 m of the Holocene sedimentary infill of Küçükçekmece Lagoon along the Marmara Sea coast of Turkey. The lagoon gradually deepens from 1 m off the northern coast to a maximum of 20 m in the southern basin. Stratigraphically, the uppermost seismic unit is characterized by a generally parallel reflection configuration, indicating deposition under low-energy conditions. In the southern basin of the lagoon, the sub-bottom is locally characterized by frequency attenuated and chaotic reflections interpreted as gas-charged sediments. Structurally, the soft sediment of the first 5 m below the lagoon floor is locally deformed by active strike-slip fault zones, here named FZ1, FZ2, and FZ3. These fault zones are NW–SE oriented and follow the long axis of the lagoon, compatible with the geographic alignment of the lagoon, the onland drainage pattern, and the scarps of the surrounding terrain. Moreover, the fault zones in Küçükçekmece Lagoon are well correlated with active offshore faults mapped during previous studies. This suggests that the FZ1, FZ2, and FZ3 fault zones are not merely local fault systems deforming the Küçükçekmece Lagoon bottom, but that they may be part of a regional fault zone extending both north and southward to merge with the northern branch of the North Anatolian Fault Zone (NAFZ) in the Ç?narc?k Basin. This, however, needs to be confirmed by further structural and seismological studies around Küçükçekmece Lagoon in order to more firmly establish its link with the NAFZ in the Marmara Sea, and to highlight potential seismic risks for the densely populated Istanbul metropolitan area.  相似文献   

4.
This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1–15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1–2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.  相似文献   

5.
This paper presents results of a seismic tomography experiment carried out on the accretionary margin off southwest Taiwan. In the experiment, a seismic air gun survey was recorded on an array of 30 ocean bottom seismometers (OBS) deployed in the study area. The locations of the OBSs were determined to high accuracy by an inversion based on the shot traveltimes. A three-dimensional tomographic inversion was then carried out to determine the velocity structure for the survey area. The inversion indicates a relatively high P wave velocity (Vp) beneath topographic ridges which represent a series of thrust-cored anticlines develop in the accretionary wedge. The bottom-simulating reflectors (BSR) closely follow the seafloor and lies at 325 ± 25 m within the well-constrained region. Mean velocities range from ~1.55 km/s at the seabed to ~1.95 km/s at the BSR. We model Vp using an equation based on a modification of Wood’s equation to estimate the gas hydrate saturation. The hydrate saturation varies from 5% at the top ~200 m below the seafloor to 25% of pore space close to the BSR in the survey area.  相似文献   

6.
Several cold vents are observed at the northern Cascadia margin offshore Vancouver Island in a 10 km2 region around Integrated Ocean Drilling Program Expedition 311 Site U1328. All vents are linked to fault systems that provide pathways for upward migrating fluids and at three vents methane plumes were detected acoustically in the water column. Downhole temperature measurements at Site U1328 revealed a geothermal gradient of 0.056 ± 0.004°C/m. With the measured in situ pore-water salinities the base of methane hydrate stability is predicted at 218–245 meters below seafloor. Heat-probe measurements conducted across Site U1328 and other nearby vents showed an average thermal gradient of 0.054 ± 0.004°C/m. Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone variations in BSR depths were used to investigate the linkages between the base of the gas hydrate stability zone and fluid migration. Variations in BSR depth can be attributed to lithology-related velocity changes or variations of in situ pore-fluid compositions. Prominent BSR depressions and reduced heat flow are seen below topographic highs, but only a portion of the heat flow reduction can be due to topography-linked cooling. More than half of the reduction may be due to thrust faulting or to pore-water freshening. Distinct changes in BSR depth below seafloor are observed at all cold vents studied and some portion of the observed decrease in the BSR depth was attributed to fault-related upwelling of warmer fluids. The observed decrease in BSR depth below seafloor underneath the vents ranges between 7 and 24 m (equivalent to temperature shifts of 0.07–0.15°C).  相似文献   

7.
Data from the 1978 Lopez Island OBS Intercomparison Experiment and deep sea data from University of Washington OBSs show that there is a considerable amount of waveform distortion resulting from the conversion of horizontal motion into vertical motion, here called cross-coupling distortion. This distortion, which substancially reduces the significance of waveform matching with synthetic seismograms, appears to result from rotation imparted to the OBS package by near-vertically traveling shear energy. The degree of this rotation seems to depend on the instrument surface area above the seafloor and the geometry and surface area of the feet connecting the package to the seafloor. The sensitivity and response of the seismometers within the package to this rotation depends on the precise location of the seismometers with respect to the axis of rotation. The results suggest how to modify OBS designs to minimize these effects.University of Washington Contribution No. 1225.  相似文献   

8.
Circular and elongated pockmarks are present between 180- and 300-m water depths in the Eastern Black Sea shelf. The circular pockmarks have diameters of 50–120 m and the elongated pockmarks are 150–200 m wide with crater depths of 10–25 m. In deeper sediments, buried pockmarks were vertically stacked, indicating that the pockmarks developed under periodically varying overpressure conditions driven by the seismologically active North Anatolian Fault. Linear elongated pockmarks were formed by downslope tensional stretching, which caused linear weak zones together with strong seafloor currents acting as a connector of circular pockmarks.  相似文献   

9.
Seismic profiling, bathymetric and physical oceanographic data collected from the Çanakkale Strait revealed that the morphological evolution of the strait has been controlled by tectonic activity, and sediment erosion and deposition. Sediments in the strait have been sourced mostly by rivers draining the Biga Peninsula during lowstand periods. In highstand periods, by contrast, deposits in the strait were reworked by currents. The seafloor morphology of the Çanakkale Strait is also controlled by a sequence of factors ranging from tectonics to current erosion and deposition. Channel deposits overlying the basement are being eroded at the narrower, meandering central section of the strait (the Nara Passage) due to high current velocities. The eroded sediments are deposited in the relatively linear and wider, northern and southern sectors of the strait exposed to low current velocities. As a result, the high-energy areas are more deeply incised due to the erosion, whereas deposition elevates the seafloor in the areas exposed to lower current energy. Three strike-slip faults, which possibly relate to the activity of the North Anatolian Fault Zone, are responsible for the irregular shape of the strait and this, in turn, controls the current velocity along the strait. The high-energy conditions probably commenced with the latest invasion of Mediterranean waters some 12 ka b.p., and have continued as a two-layered current system to the present day.  相似文献   

10.
11.
The understanding of the morphology and the shallow geo-hazards of the seafloor is a major focus for both academic and private industry research. On November and December 2009 a geophysical pipeline survey was carried out by Fugro Oceansismica S.p.A. (FOSPA) and FUGRO France (FFSA) for DORIS Engineering on behalf of GRTgaz (Engineering centre, Transmission Pipe Department; www.grtgaz.com) which are currently investigating the possibility of laying a pipeline between Sardinia and Corsica as a spur line from the planned GALSI Project. The Project, ??Alimentation de la Corse en gaz naturel??, consists of a corridor 100 km long and 1.0 km wide along the Corsica-Sardinia shelf. The integration of the multibeam, sidescan sonar and sparker data provided a high resolution seafloor mapping for geo-hazard assessment. In this article the data acquired along a break of slope section (approximately 20 km × 1.5 km), in the eastern sector of the Strait of Bonifacio are described. The area was abandoned during the survey, because of its unsuitability. Indeed, in this area the continental shelf, approximately 100 m deep and deepening gently eastward, is characterized by an uneven morphology, with different seabed features such as Beach-rocks mainly NNW-SSE oriented. Also, the continuity of the continental margin, identified around ?110/?115 m, is interrupted by four canyon heads which incise the slope and are associated with glide deposits.  相似文献   

12.
Utilizing a hull-mounted, multinarrow beam echosounder onboard RV Polarstern, we measured variation of acoustic backscatter with incidence angles at two different sites in the Southern Oceans (Agulhas Plateau and the Riiser Larsen Sea). We modeled the data, using a composite roughness model, including water-sediment interface roughness and sediment volume roughness parameters. The model effectively uses the near normal incidence angle backscatter to determine the seafloor interface roughness parameters employing Helmholtz-Kirchhoff theory. Beyond 20° incidence angles, an application of Rayleigh-Rice theory is made by using a necessary splicing technique (combining both of the theories at 20° incidence angle). The estimated interface and volume roughness parameters are found to be in accordance with the known area geology.  相似文献   

13.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

14.
海底地震仪(OBS)直接布设在海底,在地球动力学研究、油气勘探以及地震学研究等众多领域中应用广泛。随着采集技术的提高,海底地震仪也越来越广泛地应用到水合物的勘探中。文中从OBS数据采集、数据处理以及速度反演三个方面对OBS在水合物勘探中的应用现状进行综述,重点在于综述目前的应用现状和OBS使用的难点。数据采集方面主要综述了在OBS水合物勘探中几种常见的观测系统;OBS数据处理方面主要综述OBS数据预处理和OBS数据镜像成像;OBS速度反演方面主要综述常用的反演方法及其优缺点;最后,在以下几个方面对OBS在水合物勘探中的应用进行了展望:(1)优化观测系统的设计;(2)发展更先进的波场分离算法;(3)基于全波形反演以及基于面波的速度反演。  相似文献   

15.
《Oceanologica Acta》1999,22(6):641-650
The ZoNéCo programme is devoted to the evaluation of the marine resources of the Economic Zone of New Caledonia. The results are essentially dependent on the quality of the seafloor mapping. From 1993 to 1996, four geological and geophysical surveys using the EM12 DUAL multibeam echosounder provided swath-mapping and acoustic imagery data of the seafloor of selected sites on the northern and southern parts of the Norfolk ridge, the Loyalty basin, around the Loyalty islands and in the westernmost part of the Economic Zone of New Caledonia. The accuracy of these documents shows the morphology of the seafloor in detail and allows rocky substratum to be differentiated from muddy bottom. It allows favorable emplacements of future exploratory fishing surveys to be determined. The benefits of swath mapping are illustrated by the Halipro 2 deep sea trawling cruise (1996) which used the swath mapping data of ZoNéCo 1 cruise (1993) on the southern prolongation of the New Caledonia mainland and Loyalty Islands.  相似文献   

16.
利用海底地震仪数据分析台风对海底环境噪音的影响   总被引:4,自引:2,他引:2  
在海底布设的海底地震仪(OBS)能比较清晰地记录到海底的环境噪音,而台风可以直接或间接的产生在海底传播的弹性波,从而影响海底的环境噪音,并在较大程度上影响OBS的数据记录。本文通过分析台风对工作区的整个影响过程中OBS记录数据的振幅变化,再选择合适的滤波方式,首次发现台风产生的风浪及涌浪在短周期海底地震仪的记录数据上有良好的表现特征,指出了台风对海底环境噪音的另一种可能的影响方式,并由此得出:1)台风产生的风浪和涌浪对海底环境噪音的影响模式不同;2)风浪和涌浪所加强的海底环境噪音的范围和程度不同;3)短周期OBS可以比较清晰的记录涌浪信息,其周期主要是6—8 s,且能量稳定(简称“8秒现象”)。这三点结论为后期的海洋地震研究和海洋学其他研究提供经验与借鉴。  相似文献   

17.
The breakup of western margin of Australia from Greater India started around 155 Ma and progressed southwards. After the separation, the interceding intraplate region experienced large volumes of submarine volcanism, extending over 100 Myrs. The Christmas Island Seamount Province (CHRISP, as it has been dubbed) lies south of the Java-Sunda Trench, and contains numerous submerged volcanic seamounts, and two sub-aerially exposed island groups—Cocos (Keeling) Islands, and Christmas Island. While recent geochronological investigations have shed light on the diverse eruption ages of the volcanics of this region, some islands/seamounts have demonstrated protracted volcanic histories, and it is not clear how the volcanic loading, tectonic subsidence, and subsequent emergence history of the islands relates to these discrete volcanic episodes. This study utilises a number of geophysical techniques to determine the crustal structure, loading and subsidence history, and last sub-aerial exposure age for the CHRISP. The study shows that flexural and subsidence modelling are reliable techniques in constraining the age of the seamounts when geochronological techniques are not possible. Utilising regional gravity signatures, we model the crustal structure underneath the Cocos (Keeling) Island, and constrain the thickness of the limestone cover between 900 and 2,100 m. Using age-depth subsidence curves for oceanic lithosphere the time since these seamounts were exposed above sea-level was determined, and a trend in exposure ages that youngs towards the west is observed. Two episodes of volcanism have been recorded at Christmas Island and they are of different origin. The younger phase in the Pliocene is a manifestation of flexure induced cracks produced in the lithosphere as it rides the subduction fore-bulge, whereas a low velocity seismic zone rising from the lower mantle, and tectonic reorganization, may be associated with the older Eocene volcanic phase, as well as much of the rest of the province. Our modelling also supports the existence of an older, undated volcanic core to Christmas Island, based on the loading ages from flexural modelling.  相似文献   

18.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   

19.
Silver determinations in the sea-water around Monaco were carried out using a procedure consisting of preconcentration of silver with lead sulfide, followed by dithizone extraction and spectrophotometric mono-colour measurement of silver-dithizonate. The average concentration of silver in the surface sea-water around Monaco was found to be 0.14Μg Ag/l. It was also concluded that observed variations of silver content in seawater were not related to the fresh water run-off from the neighbouring coast. This suggests that the variations have to be attributed to some other factor or a combination of factors. On the basis of the observed values of the silver content of the Var River water, an upper limit of silver supply by fresh waters into the sea-area around Monaco is estimated to be 2.3Μg Ag per liter of fresh water. Considering the mixing of the fresh water with sea-water, an increase of up to 0.09Μg Ag/l in the sea-water might be expected. The fact that the increase of silver in the sea-water was not observed in connection with the fresh-water mixing suggests that some effective removal process of silver may be in operation at the immediate vicinity of the injection of fresh-water into the sea.  相似文献   

20.
Two highly active mud volcanoes located in 990–1,265 m water depths were mapped on the northern Egyptian continental slope during the BIONIL expedition of R/V Meteor in October 2006. High-resolution swath bathymetry and backscatter imagery were acquired with an autonomous underwater vehicle (AUV)-mounted multibeam echosounder, operating at a frequency of 200 kHz. Data allowed for the construction of ~1 m pixel bathymetry and backscatter maps. The newly produced maps provide details of the seabed morphology and texture, and insights into the formation of the two mud volcanoes. They also contain key indicators on the distribution of seepage and its tectonic control. The acquisition of high-resolution seafloor bathymetry and acoustic imagery maps with an AUV-mounted multibeam echosounder fills the gap in spatial scale between conventional multibeam data collected from a surface vessel and in situ video observations made from a manned submersible or a remotely operating vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号