首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
To master the laws of strong strata behavior of Tashan coal mine under Carboniferous coal mining process, the laws of strong strata behavior in 8107 working face was measured and analyzed. It was shown that the average initial weighting step of 8107 working face was 59.4 m. The average periodic weighting step of main roof was 16.2 m. The maximum working resistance during periodic weighting was 14,711.1 kN. The maximum working resistance during non-periodic weighting was 11,339.9 kN. The average dynamic load factor K during periodic weighting was 1.31. The stress of coal column on the side of the goaf could be divided into four zones (stress stabilization zone, stress slow-increasing zone, significant—increasing stress zone, stress reduction zone) along the strike of 8107 working face. There was a peak of lateral support pressure along the trend of 8107 working face. And the peak position was biased to the side of return airway roadway. With the increase of the distance from the down-side of return airway, the pressure peak of the inner coal body along the strike of 8107 the working face increased and the peak position decreased from the coal wall. The peak stress of coal column tended to be close to the up-side of return airway. And the distance from the down-side of return airway for the peak of inner coal was larger than that for the peak of coal pillar. The peak position of abutment pressure of hard roof was in the range of 10–25 m in front of 8107 working face under full mechanized mining extra thickness coal seam conditions. The relative stress concentration coefficient of k was 1.3–6.5. The range of 10–25 m from the front of the working face to coal wall was stress reduction zone. And the influence range of abutment pressure was about 80 m. It was of great significance to the control and practice of the surrounding rock of the stope for the mining of the hard extra-thick coal seam.  相似文献   

2.
This study presents a numerical investigation on the dynamic mechanical state of a coal pillar and the assessment of the coal bump risk during extraction using the longwall mining method. The present research indicates that there is an intact core, even when the peak pillar strength has been exceeded under uniaxial compression. This central portion of the coal pillar plays a significant role in its loading capacity. In this study, the intact core of the coal pillar is defined as an elastic core. Based on the geological conditions of a typical longwall panel from the Tangshan coal mine in the City of Tangshan, China, a numerical fast Lagrangian analysis of continua in three dimensions (FLAC3D) model was created to understand the relationship between the volume of the elastic core in a coal pillar and the vertical stress, which is considered to be an important precursor to the development of a coal bump. The numerical results suggest that, the wider the coal pillar, the greater the volume of the elastic core. Therefore, a coal pillar with large width may form a large elastic core as the panel is mined, and the vertical stress is expected to be greater in magnitude. Because of the high stresses and the associated stored elastic energy, the risk of coal bumps in a coal pillar with large width is greater than for a coal pillar with small width. The results of the model also predict that the peak abutment stress occurs near the intersection between the mining face and the roadways at a distance of 7.5 m from the mining face. It is revealed that the bump-prone zones around the longwall panel are within 7–10 m ahead of the mining face and near the edge of the roadway during panel extraction.  相似文献   

3.
Intensive strata behaviors are generated when the No. 8707 working face of the 8# coal seam in a coal mine is advanced by way of the pillars left over of the upper part of 7# close distance coal seam. The theoretical analysis, numerical simulation and filed measurement were utilized to obtain the rule of the stress change when the 8707 working face of the 8# coal seam passes the pillars left over of the 7# coal seam. Meanwhile, a pressure-relief mining (PRM) technology was put forward. According to the research results, when the 8707 working face in the 8# coal seam was advanced to the position that was 20 m in front of the pillar left over, the abutment pressure reached the maximum for 26 MPa and the stress concentration factor was 3.25, which was likely to give rise to the rock burst. With the advance of the working face, the abutment pressure was reduced slowly. As the 8707 working face advanced 15 m away the pillar left over, the transfixed shear failure region of 45° was found in the bedrocks of the upper and lower coal seams, which was readily to give rise to the shear rupture, leading to the rock burst. Based on the aforementioned research, this research carried out the PRM by applying the hydraulic fracturing technology on the coal roof and pillar, which can ensure the safety and efficient mining of working faces.  相似文献   

4.
The paper presented the research on the dynamic advanced abutment stress induced by longwall mining with borehole stress meters on mining side coal mass. Twenty vibrating wire borehole stress meters were installed into the extracting coal mass wall of a first mining roadway of 910 m depth in Zhuji Coal Mine, China, and were used to monitor dynamic changes in vertical and horizontal stresses. Three months of continuous monitoring and further analysis showed that the impacting distance of advanced abutment stress induced by mining in the strike of the working face along its central axis was the farthest, greater than 250 m (the face length is 220 m); it gradually decreased in the radial direction of the face from its central axis outward; the pressure peak was located within 24 m in the front of the mining coal wall; non-synchronous caving of the layered mudstone roof at the stope occurred. Comparison between vertical and horizontal stress increments indicated that the horizontal stress was much smaller than the vertical stress in the coal mass of mining side, while the latter’s magnitude determined the drastic degree of mine pressure manifestation. The study has been applied to determine the advanced support length of the working face and further provide a reliable basis to forecast such dynamic disasters as rock burst, coal and gas outburst, etc., as well as to design the asymmetric supports on both sides of a gateway.  相似文献   

5.
大采深工作面煤层底板采动破坏深度测试   总被引:1,自引:0,他引:1  
针对邢东矿大采深的情况,利用现场底板注水试验对2121工作面底板采动破坏深度进行了测试研究,依据单位注水量的动态变化以及注水孔与采线之间的距离关系,确定了底板破坏深度。试验结果表明:该工作面底板破坏深度为32.5~35m,比300m采深以内的工作面实测深度(9.15~12.0m)增加2倍以上,说明随着开采深度的增加,煤层底板采动破坏深度呈明显增大的趋势,因此,在水压和破坏深度二者同时增加的条件下,2121工作面深部煤层开采的突水危险性远远大于浅部煤层。测试结果为邢东矿大采深工作面的防治水方案的制订提供了科学依据。   相似文献   

6.
针对孤岛工作面煤层开采底板损伤问题,以河北葛泉煤矿11913孤岛工作面为研究对象,采用微震方法分析其底板破坏深度;并通过数值模拟对首采、跳采及孤岛3种工作面回采过程中围岩采动应力与底板破坏的规律进行了对比分析。微震测试结果显示11913工作面回采过程中微震事件主要发生在下巷,识别出工作面最大破坏深度20~25 m;基于COMSOL的11912首采、11914跳采及11913孤岛3个工作面数值模拟结果显示,11912首采与11914跳采条件下煤柱地应力集中状态变化不大,最大破坏深度小于11.56 m,仅发育至工作面底板的注浆改造层内部;而11913孤岛回采条件下,受到重复采动影响,工作面两侧煤柱应力集中状态骤增,最大破坏深度剧增至23 m,已发育至煤层底板的本溪组灰岩含水层。研究结果对于华北型煤田下组煤层开采底板破坏规律分析与不同类型工作面回采条件下底板水害防治有一定的参考价值。   相似文献   

7.
The characteristic of the distribution and evolution of the fractured zone has important guiding significance for gas drainage design. In this paper, the 2ZW11 face of the Dahuangshan coal mine was chosen as an engineering example, and the evolution of the fractured zone was analysed using physical and numerical simulations. The results showed that in the vertical direction, the heights of the fractured zone and the caved zone tended to be stable after the face advanced to 200 m. The heights of the two zones drawn from the physical and numerical simulations were supported by the field test. The traditional empirical formula may not be appropriate for predicting the heights of the two zones of working faces with large mining heights. In the horizontal direction, the bed-separated ratio of the overburden strata above the face position was slightly higher than that of the overburden strata above the open-off cut position. Finally, a high-level drainage was designed and undertaken in the 2ZW11 face.  相似文献   

8.
以孟加拉国Barapukuria煤矿X工作面为试验区,采用井下钻孔分段压水原位测试及相关理论计算方法,研究了工作面回采前后覆岩渗透性变化规律及垂向分带特征。研究结果表明,工作面回采前后,覆岩渗透性变化显著,采后覆岩渗透性具有明显的垂向分带特征。自覆岩导水裂缝带顶部至底部,渗透性呈阶梯状逐渐增大,可细分为弱渗透带、中渗透带和强渗透带。研究结果对煤矿区水文地质参数识别与涌水量预测工作具有指导意义。   相似文献   

9.
The present research makes an effort towards awareness of the impact of underground coal mining on water environment around the Barapukuria coal mining area, Dinajpur by direct field investigation, questionnaire survey and laboratory analysis. For this research, the three foremost errands have been mulled over which are the water level data analysis for 10 years from 2001 to 2011, ground water major parametric analysis and the questionnaire survey on the availability of ground water before and after coal mining operation. The results of field and laboratory analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, Temperature, HCO3 ?, NO3 ?, SO4 2?, Cl?, Na+, K+, Mg2+, Ca2+ and Fe(total) are still tolerable for all purposes and also within the standard limit. On the other hand, the questionnaire survey and water level data analysis confirm almost similar results regarding the depletion of water level. The water level has depleted more than 5 m from 2001 to 2011. Therefore, currently the availability of ground water is normal in the rainy and winter seasons but is slight problematic in the dry season where ground water was available at all times prior to coal mining in the area. From these scenarios, it is comprehensible that the ground water level moves downwards than earlier because of the excess pumping of water from the mine area. Besides the natural recharge condition is not enough and somewhere breaks off while some of the mines out areas are subsided, consequently the upper part of the water bearing formations (aquifer) loses its porous and permeable properties resulting water recharging problem which is directly responsible for depleting the ground water level over the area. Moreover, the water levels will also decline relative to the location, depth, recharge, and discharge conditions of the mine both aerially and vertically while there is a typical relationship between the depth of mining and static water level which is water levels will decline more as the mine goes deeper. Therefore, taking into account the current ground water condition and the depth of Barapukuria coal mine, this research implied that the water level will deplete more in day coming and the water crisis will be more for future. Thus, this research recommends a sustainable guideline for long-term planning and also suggests that regular monitoring with time to time more detail qualitative and quantitative assessments of water bodies in the area.  相似文献   

10.
Water inrush from Ordovician karst aquifer in North China coal mine has become a key issue on underground coal mining. To address this problem, it is necessary to identify fault zones, because fault zones might connect limestone aquifers and coal seams, enabling Ordovician karst water to enter the mine. In the study area, a series of parallel directional holes were drilled along Ordovician limestone at depths between 70 and 90 m under Ordovician limestone boundary. To conveniently detect fault zones and govern mine water disasters, a series of natural gamma-ray logging while drilling (GRLWD) were undertaken. The entire detecting region can be comprehensively covered by several directional borehole groups. Then, fast Fourier transform and short-time Fourier transform approaches were employed on the basis of GRLWD data and geological data to extract faults information. A segmented identification method for deep fault zones was established in this study. This method can be used to markedly improve the identification of fault zones within Ordovician limestone or the unitary lithology formation and provide crucial information relevant for deep coal mining safety.  相似文献   

11.
 The fibrogenic and cytotoxic potential of coal mine dust is independent of the amount of quartz and other inorganic parameters. Results of coal petrographical and organic geochemical investigations of coals and coal mine dust from the Ruhr and Ibbenbüren Region of Germany demonstrate variations of organic dust amount possibly influencing these noxious properties. Coal mine dust of high rank coals is characterized by a pronounced fibrogenic risk. This risk, independent of the quantity of quartz, is probably based on shape variations of different coal macerals. With increasing coalification of the corresponding seam, the vitrinite is enriched in its dust; however, lower concentrations have been determined for inertinite. Vitrinite shows constant shapes and sizes independent of the rank of coal. Inertinite particles with elongated to fibrous shapes tend to larger sizes with increasing coalification. Strikingly, coal mine dust from miners' lungs with high degrees of coal mine workers' pneumoconiosis (CWP) is enriched in inertinite. In contrast, high cytotoxicities in cell tests are known for coal mine dust from low coalified coals. High concentrations of phenolic compounds can be extracted by dichloromethane from low coalified coal mine dust. These compounds, which are characterized by a high water solubility and therefore high bioavailability, explain the high cytotoxicities of coal mine dust. Contamination of dust by diesel emissions in the coal mine can act as additionally supporting parameters for extended cytotoxicities. Received: 18 August 1995 · Accepted: 15 October 1995  相似文献   

12.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

13.
A dewatering test is a common tool to estimate the physical properties of water-bearing layers in coal mines. The three step-drawdown dewatering test of unsteady flow, which combines both steady and unsteady flows, is designed in this study. The test design involves the identification of hydrogeological conditions, calculation of hydrogeological parameters, and prediction of mine water yields, particularly those of the Siwan coal mine in the coal mining district of Hebi. The results show that the water storage and the abundance of the second limestone aquifer in Taiyuan formation (L2) is limited and easy to drain, while the Ordovician system aquifer (O2) lateral recharges the L2 by the F8 fault. The correlation curve method, the cone balance method, and the analytical method are conducted in this study. Results show that the average water yield was 1436.1 m3/h when the water level of L2 decreased from +?127 m to +?17 m. The three step-drawdown dewatering test not only provides ways to enrich the experimental data and reveal hydrogeological conditions, but it can also be adopted in several approaches to predict mine water yields.  相似文献   

14.
The paper presents results of the study on oil shale mining (Estonia underground mine) possibilities under the Selisoo mire. The Selisoo area is 2,051 ha in extent, and most of the mire is in natural state. Peat layer consists of thick (4.4–6.5 m) oligotrophic peat. Mining under Selisoo will go at depths 65–70 m under the surface. The mining field of the Estonia mine was planned between Ahtme and Viivikonna fault zones. The lowest hydraulic conductivity of carbonate rocks 0.11 l/day per m2 is found in the Oandu layer and for peat it is 0.35–0.0002 m/day. Therefore, together they form a good aquitard. When the annual rainfall amount is the highest, the difference between horizontal water inflow and runoff is positive with 127,000 m3. Positive water balance is guaranteed in case of precipitation being at least 540 mm/year. The positive water balance is important for preserving the ecological system of Selisoo mire. For guaranteeing long-term stability of mine pillars, a new calculation method has been elaborated, based on the conventional calculation scheme, where the factor of safety is more than 2.3. Rheological processes are out of question, collapse of the pillars is impossible. Stability of the underground constructions and overburden rocks must be “eternal”. The criteria were elaborated for oil shale mining and will guarantee preservation of mires in natural or close to natural state.  相似文献   

15.
In China’s western coal mining area, the traditional room mining technology is facing coal pillar instability, mine earthquake, large-area roof subsidence in the goaf, surface subsidence, water and soil loss, vegetation deterioration, and other environmental problems. To solve the aforementioned problems and to improve coal recovery, the roadway backfill coal mining (RBCM) method was proposed as a solution and its technical principle and key equipment were presented in this paper. In addition, the microstructure and mechanical behavior (strain-stress relation in confined compressive test) of aeolian sand and loess backfill materials were studied for a rational backfill design for underground mines. Further, coal pillar stress, plastic zone change, and surface deformation of the RBCM schemes were studied using the FLAC3D numerical simulation software, and a reasonable mining scheme of “mining 7 m and leaving 3 m” was determined. The engineering application in Changxing Coal Mine shows that the RBCM method with loess and aeolian sand as backfill materials allows a stable recovery of coal pillars with a recovery ratio of more than 70 %. The maximum accumulated surface subsidence and the maximum horizontal deformation were measured to be 15 mm and 0.8 mm/m respectively, indicating that the targeted backfilling effect can help protect the environment and also control surface subsidence.  相似文献   

16.
以重庆松藻矿区在打通的一综采工作面缓倾斜地层中掘进时发生的两次顶板水灾为例,对其顶板突水原因进行了探讨。通过分析该矿区的矿井地质及水文地质条件,认为矿井充水水源为上覆地层的离层水。该矿井的M7-3煤层开采后,导水裂隙切穿了上覆地层长兴组灰岩,贯通了玉龙山一段灰岩隔水层,进入玉龙岩二段岩溶裂隙含水层。由于含水层的上覆岩层在采掘过程中,因岩性差异发生不均衡沉降,形成了大量的离层空间。离层空间吸收、储存的大量地表降雨在采掘工作面推进到一定位置时,就会发生突水。据估算,S1821工作面上覆岩体离层、裂隙储水空间按三分之一计算为2.064×105m^2,与该工作面抢险救灾期间排出的涌水量基本吻合。根据该矿离层水的赋存特点,提出了保证排水系统畅通,加强采煤设备管理,提高采面设计水平的防治水对策。  相似文献   

17.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

18.
为了研究采动破坏过程煤体电位信号的响应特征与规律,利用自主研发的矿用电位仪在河南薛湖煤矿25050综采工作面进行了现场测试。结果表明:煤层采动破坏过程能够产生显著的电位信号,电位响应特征能够揭示煤体应力状态的变化,随着回采工作面的推进,电位强度呈先增加后降低趋势,利用钻孔卸压后,煤体应力降低,电位信号随之下降;电位强度与钻屑量的空间分布规律基本一致,利用电位空间分布规律能够识别应力异常特征,出现“卡钻”现象时,煤体应力异常,电位强度出现峰值;当瓦斯指标超限或出现大能量煤炮事件时,电位信号呈超前增大趋势并伴随剧烈波动,利用电位信号能够识别煤岩动力灾害危险的前兆特征。研究成果表明利用电位手段可现场监测煤体采动破坏、预警煤岩动力灾害。   相似文献   

19.
This paper presents dust exposure study of 69 workers engaged in 11 categories of jobs over seven coalmines of Jharia Coalfields. Dust samples were analysed for dust concentration, maximum exposure limit (MEL), free silica and other minerals present, and particle size and shape. Study reveals that workers engaged in vicinity of coal/rock cutting operation, are exposed to higher dust concentration (50% samples exceeding MEL), and contain more fine particles (d 50 < 5 μm) with sharp edges. Samples exceeding MEL are classified as high-risk category which needs special attention for taking preventive and protective measure like use of personal protective equipments, job rotation and reduction in dust generation through engineering control using appropriate technology of dust suppression and dust extraction as per their applicability. The study also suggests presence of kaolinite and asbestos along with quartz which make the dust more harmful in nature necessitating further investigation and careful control measures.  相似文献   

20.
导水裂隙带发育高度是矿井水害预测的重要技术参数之一。以彬长矿区文家坡煤矿4103工作面为研究对象,利用井-地联合微震监测技术对顶板导水裂隙带发育特征进行研究。研究结果表明:深埋煤层开采时,微震事件超前工作面回采位置发育,超前影响角最大为35°,最小为28°;断层的存在降低了覆岩稳定性,相较于正常基岩,更易在回采影响下发生应力集中和破坏;断层加大了微震事件发生的超前距,而采空区则使微震事件的高密度区向其所在部位发生偏移,加剧覆岩破坏程度,增大导水裂隙带发育高度;垂向上,4103工作面监测区内的微震事件高密度区域主要集中在高程+400~+520 m,结合微震事件数量和能量分布特征,判定4103工作面垮落带发育高度为50 m,垮采比13.16,导水裂隙带发育高度为117 m,裂采比为30.79。该成果可为彬长矿区类似煤矿深埋煤层顶板导水裂隙带发育高度研究及顶板水防治提供重要依据。移动阅读   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号