首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent developments of cerium-doped lanthanum-halide scintillators like LaBr3:Ce show a remarkable performance in gamma-ray spectroscopy. When high energy resolution in combination with stopping power is required they provide excellent gamma-ray detector candidates for the use in space missions. Moreover, irradiation tests have shown that such detectors are radiation tolerant. In this paper we discuss a possible application of LaBr in nuclear astrophysics missions. We show results on recent proton irradiation tests at KVI in Groningen (NL) and discuss the damage and activation effects after irradiation. A possible implementation for a focal plane detector in a gamma-ray telescope and the expected performance is presented.  相似文献   

2.
The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 µm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.  相似文献   

3.
The strongly perturbed environment of a small body, such as an asteroid, can complicate the prediction of orbits used for close proximity operations. Inaccurate predictions may make the spacecraft collide with the asteroid or escape to the deep space. The main forces acting in the dynamics come from the solar radiation pressure and from the body’s weak gravity field. This paper investigates the feasibility of using bi-impulsive maneuvers to avoid the aforementioned non-desired phenomena (collisions and escapes) by connecting orbits around the triple system asteroid 2001SN263, which is the target of a proposed Brazilian space mission. In terms of a mathematical formulation, a recently presented rotating dipole model is considered with oblateness in both primaries. In addition, a “two-point boundary value problem” is solved to find a proper transfer trajectory. The results presented here give support to identifying the best strategy to find orbits for close proximity operations, in terms of long orbital lifetimes and low delta-\(V\) consumptions. Numerical results have also demonstrated the significant influence of the spacecraft orbital elements (semi-major axis and eccentricity), angular position of the Sun and spacecraft area-to-mass ratio, in the performance of the bi-impulsive maneuver.  相似文献   

4.
The conversion gain of optical and infrared focal plane CMOS hybrid arrays is a fundamental parameter, whose value computes into the derivation of other parameters characterizing the performance of a detector. The widespread “noise squared versus signal” method used to obtain the conversion gain can overestimate the nodal capacitance of the detector pixel by more than 20% for infrared arrays and by more than 100% for Si-PIN diode arrays. This is because this method does not take account of the capacitive coupling between neighboring pixels. A simple technique has been developed to measure the nodal capacitance directly by comparing the voltage change of an external calibrated capacitor with the voltage change on the nodal capacitor of the detector pixel. The method is elaborated in detail and has been verified with a Si-PIN diode array hybridized to a Hawaii-2RG multiplexer using an Fe 55 X-ray source. It is also in good agreement with a stochastic method based on 2D autocorrelation.  相似文献   

5.
Ultra-violet image sensors and UV optics have been developed for a variety of space borne UV astronomy missions. Technology progress has to be made to improve the performance of future UV space missions. Throughput is the most important technology driver for the future. Required developments for different UV detector types – detectors are one of the most problematic and critical parts of a space born mission – and for optical components of the instruments are given in these guidelines. For near future missions we need high throughput optics with UV sensors of large formats, which show simultaneously high quantum efficiency and low noise performance.  相似文献   

6.
For conventional radiation detectors fabricated from compound semi-conductors, the wide disparity between the transport properties of the electron and holes, means that detector performances are limited by the carrier with the poorest mobility-lifetime product (μτ). Finite drift lengths introduce an energy dependent depth term into the charge collection process, which effectively limit maximum detection volume to tens of mm3 – entirely unsuitable for the detection of gamma-rays. The recent introduction of the coplanar-grid charge-sensing techniques has overcome this problem by essentially discarding the carrier with the poorest transport properties, thus permitting high spectral resolution and high detection efficiency. For example, energy resolutions of 2% full-width half-maximum at 662 keV have been demonstrated with coplanar-grid CdZnTe detectors of volumes up to 2 cm3. Further improvements in detector performance and yield are being pursued through refinements in electrode design and material quality. Because coplanar-grid CdZnTe detectors can operate at room temperature, they are ideally suited for applications requiring portability, small size, or low power consumption such as planetary space missions. Other potential applications include well logging, medical diagnostics, and gamma-ray astronomy. We discuss the feasibility and design of a solid state gamma-ray detector based on CdZnTe and compare its performance to a large volume Ge detector. As will be shown, a significant improvement can be made if T1Br is used as the detection medium.  相似文献   

7.
Criteria for selecting continuous channel electron multipliers were applied to fifteen Mullard units without significantly affecting their overall lifetime. The gain fatigue vs accumulated counts, the change of the pulse height distribution during lifetime, the gain degradation vs count rates as well as the gain vs operating voltage and the resolution vs operating voltage have been investigated using a tritium source. The results provide several criteria to determine good, marginal and poor multipliers. From all tested devices 25% had a very low gain and did not operate satisfactory at the end of their lifetime investigations (4×109 accumulated counts). 40% of all devices could be classified as good multipliers. Their main characteristic was a gain recovery phenomenon after 3×109 accumulated counts with a progressive gain stabilizing. Multipliers classified as marginal exhibited some unexpected behaviour during the lifetime but a gain recovery phase and gain plateau region could be identified. Furthermore, the relative efficiency of the multipliers vs electron energy as a function of the operating voltage has been measured by using a near monoenergetic electron beam.Originally submitted to the journalSpace Science Instrumentation.  相似文献   

8.
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics.  相似文献   

9.
ASTRI SST-2M is one of the prototypes of the small size class of telescopes proposed for the Cherenkov Telescope Array. Its optical design is based on a dual-mirror Schwarzschild-Couder configuration, and the camera is composed by a matrix of monolithic multipixel silicon photomultipliers managed by ad-hoc tailored front-end electronics. This paper describes the procedures for the gain calibration on the ASTRI SST-2M. Since the SiPM gain depends on the operative voltage and the temperature, we adjust the operative voltages for all sensors to have equal gains at a reference temperature. We then correct gain variations caused by temperature changes by adjusting the operating voltage of each sensor. For that purpose the SiPM gain dependence on operating voltage and on temperature have been measured. In addition, we present the calibration procedures and the results of the experimental measurements to evaluate, for each pixel, the parameters necessary to make the trigger uniform over the whole focal plane.  相似文献   

10.
We have developed a camera dedicated to imaging faint transient noctilucent phenomena, such as aurorae, electric discharges, meteors or impact flashes, on dark planetary hemispheres. The Smart Panoramic Optical Sensor Head (SPOSH) is equipped with a back-illuminated 1024×1024 CCD chip E2V 47-20 with up to 90% quantum efficiency and has a custom-made optical system of high light-gathering power with a wide field of view of 120°×120°. Images can be obtained over extended periods at high rate to make monitoring for transient events possible. To reduce the data transmission rate, only those images (or relevant portions thereof) that contain events are returned to the user. The camera has a sophisticated processing unit prepared to interface with a spacecraft system, for image processing and event detection at rates of up to 3 images per second at full resolution. While software optimized for detection of any noctilucent phenomenon can be implemented, the software is currently optimized for the detection of meteors. Over the past years, we have routinely carried out outdoor tests with 4 camera breadboard units that demonstrate that the camera has excellent radiometric performance and geometric resolution at low light levels over its large field of view. The camera has been demonstrated to capture meteors of magnitudes as faint as +6m moving at angular speeds of 5°/s. The camera opens up new science opportunities for planetary missions.  相似文献   

11.
Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and γ-ray detection. However, a considerable amount of charge loss in these detectors results in a reduced energy resolution. We have achieved a significant improvement in the spectral properties by forming the Schottky junction on the Te side of the CdTe wafer. With the further reduction of leakage current by an adoption of guard ring structure, we have demonstrated a CdTe pixel detector with high energy resolution and full charge collection capabilty. The detector has a pixel size of a few mm and a thickness of 0.5 $-$ 1 mm. We apply this high resolution detector to a new silicon and CdTe Compton Camera which features high angular resolution. We also describe a concept of the stack detector which consists of many thin CdTe layers and provides sufficient efficiency for hard X-rays and gamma-rays up to several hundred keV maintaining good energy resolution. A narrow-FOV Compton telescope can be realized by installing a Si/CdTe Compton Camera inside the deep well of an active shield. This configuration is very suitable as focal plane detector for future focusing gamma-ray missions.  相似文献   

12.
LEGRI has been operating successfully on MINISAT-01 since its switch-on the 22nd of May 1997. HouseKeeping (HK) data have been continuously receivedfor nearly two years by LEGRI SOC in Valencia, and subsequently checked on adaily basis and then stored for long term monitoring analysis.LEGRI HouseKeeping data include three critical operating parameters:temperature, power and polarisation voltages. Six temperature sensors arespread over the different LEGRI units: Detector Unit, Data Processing Unit,High Voltage Unit and Star Sensor. Voltages are measured at eight differentpoints. Detector Unit temperature and polarisation voltage are thecritical parameters for LEGRI operation. Solid state detectors aresensitive to changes not only in polarisation but also in temperature.Around one and a half million of measurements for each of the HK fourteen parameters have been recorded and analysed. The data show a very remarkablestability, within the expected margins, and the averages are very close to theoptimal design values. Special attention has been paid to the detectorpolarisation voltages analysis with a mean value of 286 ± 2 V when the detectors are operating. Thermal control over all the LEGRI units shows a remarkable stability in their temperatures.On the detector plane a mean value of T det = 13 ± 2 °C has been found.We can therefore conclude that LEGRI as a system has been operating withinits optimal design conditions. We also want to point out the excellentperformance of the MINISAT-01 thermal control system.  相似文献   

13.
We present the results of our observations of the maser radio emission source G188.946+0.886 in hydroxyl (OH) molecular lines with the radio telescope of the Nançay Observatory (France) and in the H2O line at λ = 1.35 cm with the RT-22 radio telescope at the Pushchino Observatory (Russia). An emission feature in the 1720-MHz satellite line of the OH ground state has been detected for the first time. The radial velocity of the feature, V LSR = 3.6 km s?1, has a “blue” shift relative to the range of emission velocities in the main 1665- and 1667-MHz OH lines, which is 8–11 km s?1. This suggests a probable connection of the observed feature in the 1720-MHz line with the “blue” wing of the bipolar outflow observed in this region in the CO line. We have estimated the magnetic field strength for three features (0.90 and 0.8 mG for 1665 MHz and 0.25 mG for 1720 MHz) from the Zeeman splitting in the 1665- and 1720-MHz lines. No emission and (or) absorption has been detected in the other 1612-MHz satellite OH line. Three cycles of H2O maser activity have been revealed. The variability is quasi-periodic in pattern. There is a general tendency for the maser activity to decrease. Some clusters of H2O maser spots can form organized structures, for example, chains and other forms.  相似文献   

14.
We analyzed the monitoring data for the maser S255 obtained in the H2O line at λ=1.35 cm with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory in 1981–2002. The maser was most active during 1998–2002. Since 2001, the H2O spectra have been extended and complex; their triplet structure has been disrupted. The extent of the spectra was 24 km s?1 (from ?6 to 18 km s?1). We calculated orbital parameters for some of the components. We estimated the mass of the central star to be (6–7)M and the outer Keplerian-disk radius to be ~160 AU.  相似文献   

15.
DSRI has initiated a development program of CZT X-ray and gamma raydetectors employing strip readout techniques. A dramatic improvement ofthe energy response was found operating the detectors as so-called driftdetectors. For the electronic readout, modern ASIC chips wereinvestigated. Modular design and the low power electronics will make largearea detectors using the drift strip method feasible. The performance of aprototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: TheX-Ray Imager (XRI) on the Atmospheric X-ray Observatory (AXO), whichis a mission proposed to the Danish Small Satellite Program and is dedicatedto observations of X-ray generating processes in the Earth's atmosphere. Ofspecial interest will be simultaneous optical and X-ray observations of spritesthat are flashes appearing directly above an active thunderstorm system.Additional objective is a detailed mapping of the auroral X-ray and opticalemission. XRI comprises a coded mask and a 20 cm × 40 cm CZTdetector array covering an energy range from 5 to 200 keV.  相似文献   

16.
We analyze our monitoring data for the water-vapor maser in the source W31(2), associated with a region of vigorous star formation, a cluster of OB stars. The monitoring was performed with the 22-m radio telescope at Pushchino Radio Astronomy Observatory during 1981–2004. The variability of the H2O maser in W31(2) was found to be cyclic, with a mean period of 1.9 yr. Two flares were most intense (superflares): in 1985–1986 and 1998–1999. In each activity cycle, we observed up to several short flares, subpeaks. The fluxes of many emission features during the flares were correlated. We also observed successive activation of individual emission features in order of increasing or decreasing radial velocity, suggesting an ordered structure and, hence, a radial-velocity gradient of the medium. There is a clear correlation of the emission peaks of the main components in the spectra at radial velocities of ?1.7, ?1.3, 0.5, and 1.3 km s?1 with activity cycles and of the emission at VLSR < ?8 km s?1 with short flares. During the superflares, the emission in the low-velocity part of the H2O spectrum and a number of other phenomena related to coherent maser-emission properties were suppressed. The maser spots are assumed to form a compact structure, to have a common pumping source, and to be associated with an accretion flow onto the cluster of OB stars.  相似文献   

17.
The scattering of soft protons inside the Wolter-type optics of X-ray observatories has been proven to concentrate these particles onto the focal plane instruments. The funneling of these protons increases the instrumental background and can also contribute to the degrading of the detectors. The instrumental background and degradation of the detector’s performance experienced by Chandra and XMM-Newton is significantly larger than what was expected on the basis of previous Monte Carlo simulations. For Chandra the main issue is the degradation of the energy resolution due to lattice displacements in the detectors. For XMM the contribution to the instrumental background is more significant. In between, new laboratory measurements as well as a revision of the theory are needed to correctly assess the impact of the environmental radiation for future missions. In this publication we present a Geant4 class that will allow future users to select between either theoretical models or measured data to simulate the scattering of soft protons at grazing angles. To develop this method, we revisit the theory of elastic scattering of protons on polished surfaces and implement these approaches into Geant4. We also implemented recently performed measurements using parts of eROSITA (extended ROentgen Survey with an Imaging Telescope Array) mirror shells as scattering targets as another scattering model to be used within the Geant4 toolkit.  相似文献   

18.
We present dark energy models in an anisotropic Bianchi type-VI0 (B-VI0) space-time with a variable equation of state (EoS). The EoS for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102 2003), SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004b) and latest a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. 180:225, 2009; Komatsu et al. in Astrophys. J. Suppl. 180:330, 2009). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric aspects of the models are also discussed in detail.  相似文献   

19.
The historical development of ground based astronomical telescopes leads us to expect that space‐based astronomical telescopes will need tobe operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Jupiter’s atmosphere presents limited regions of relatively thin cloud coverage (the so-called ‘hot spots’), which allow thermal radiation by warmer, deeper atmospheric layers to be transmitted directly to space. Hot spots therefore represent a means for probing physical conditions (namely chemical composition) below the main aerosol deck.Forthcoming missions to the Jovian system - Juno and EJSM spacecrafts - will host as payload components spectro-imagers operating in the infrared. Their coverage of 5 μm CH4 transparency windows make them particularly suitable for the investigation of hot spots. This study is an assessment of their retrieval capabilities on the evaluation of gaseous mixing ratios from nighttime observations, on the basis of Bayesian theory.The retrieval performance is evaluated for the JIRAM instrument, a confirmed payload component of Juno. Its data will provide effective constraints on the mixing ratios of water vapor between 40 and 70 km below the reference 1 bar pressure level (between 3.5 and 7 bars). Assuming an a priori correlation length equal to half the scale height, we achieve a minimum retrieval uncertainty of 0.17, once the mixing ratio is given in terms of log10(α), with α being the adimensional mixing ratio (vs. altitude) relative to a given reference profile. The JIRAM-Juno dataset will further allow determination of the ammonia mixing ratio, with a minimum relative retrieval uncertainty of 0.32 in the same altitude range, and of the phosphine mixing ratio, with comparable uncertainty up to the reference altitude.The retrieval performance is evaluated for a second instrument VIRHIS, which is a proposed payload component of Jupiter Ganymede Orbiter (JGO), one of the two spacecrafts of Europa-Jupiter System Mission (EJSM). This instrument has the benefit of higher spectral resolution and extended spectral range, when compared to JIRAM-Juno. Evaluation of the water vapor retrieval shows the uncertainty would be reduced to 0.08 with VIRHIS. The ammonia retrieval range would be expanded up to 10 km (0.66 bar), with a minimum uncertainty value of 0.10.Both instruments will place these measurements in a spatial context due to their simultaneous imaging capabilities, enabling therefore a number of studies covering chemical and dynamical aspects of atmospheric evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号