首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
大气气溶胶辐射强迫及气候效应的研究现状   总被引:51,自引:0,他引:51  
由于工业活动的影响,对流层气溶胶含量明显增加。他们通过直接吸收和反射太阳辐射以及改变其它辐射强迫因子(云、臭氧)的大小间接影响地气系统的能量收支。近年来研究表明:人类活动产生的气溶胶具有与CO2温室气体大小相当、符号相反的辐射强迫效应。他们在全球或区域范围内削弱温室气体的变暖趋势,对气候变化造成很大的影响。文章就人为气溶胶辐射强迫及气候效应近年来的研究状况做了介绍。  相似文献   

2.
平流层微量气体变化趋势的研究   总被引:4,自引:1,他引:3  
采用HALOE提供的1992—2005年的资料,分析了平流层几种微量气体(臭氧、HCl,HF,NO,NO2,水汽和甲烷)的混合比在不同高度、不同纬度带的变化趋势, 以期为研究平流层的辐射和化学过程提供一些有用的数据。结果表明,在不同纬度带这些微量气体的变化特征并不相同,在不同高度上他们的变化特征也不大一样。这14年臭氧的变化趋势与其他几种微量气体的变化趋势对比表明,在平流层上层,1990年代中期以后臭氧浓度的恢复比较明显,而且这14年臭氧的变化趋势与HCl、HF和水汽的变化趋势是相反的。在平流层中层臭氧的变化趋势复杂一些,除一些微量成分对它的破坏外,还受到其它因素的影响。但1997—2002年臭氧混合比增大,与HCl、NO,NO2和水汽混合比的减小趋势是相反的,这说明《蒙特利尔条约》及其它环保措施的实施对平流层中层臭氧浓度的恢复也已初见成效。  相似文献   

3.
徐影  丁一汇  赵宗慈 《冰川冻土》2003,25(3):327-330
使用IPCCWG1第三次科学评估报告中给出的7个全球气候系统模式的模拟预测结果,分析了人类活动对中国西北地区气候变化的影响.模拟结果表明,由于温室气体增加(GG)或温室气体与硫化物气溶胶(GS)增加,21世纪西北地区气温将可能平均变暖42~60℃·100a-1.降水的变化较为复杂,由于温室气体的影响,未来西北地区降水将增加;考虑温室气体和硫化物气溶胶的共同影响,则略有增加.模式平均结果表明,未来西北地区降水将可能增加15~39mm·100a-1.  相似文献   

4.
臭氧变化及其气候效应的研究进展   总被引:10,自引:0,他引:10  
综述了近20年来臭氧变化的规律和机制及其气候效应等领域的研究进展,指出对流层臭氧(主要在北半球)增加、平流层臭氧减少和臭氧总量减少是全球臭氧的变化趋势,原因主要是人类活动导致的NOx、NMHC、CO、CH4等对流层臭氧前体物的增加和NOx、H2O、N2O、CFCs等平流层臭氧损耗物质的增加。臭氧变化引起的气候效应表现在对流层臭氧的增加将带来地表和低层大气的升温,平流层臭氧的减少则可能导致地表和低层大气的升温或降温。将全球或区域气候模式和大气化学模式进行完全耦合来研究臭氧变化的气候效应是一种十分有效的手段,具有广阔的应用前景。  相似文献   

5.
温室气体排放对全球变暖的相对贡献   总被引:7,自引:0,他引:7  
在过去几年,许多研究者注意到大量的痕量气体的浓度增加对气候的联合效应可能赶上甚至超过浓度日益增加的二氧化碳的效应。这些痕量气体主要是甲烷、一氧化二氮和含氯氟烃类,在浓度上比二氧化碳低2~6个数量级,然而它们每个分子吸收红外辐射的能力比二氧化碳强得多。实际上,一项最新研究表明,痕量气体是1980—1990年辐射作用项增加43%的主要原因。需要一个比较各种“温室”气体排放对全球变暖相对贡献的指数,以便确定限制这种变暖的有效对策。在特殊时期内,对附加温室作用项贡献的估计完全没有考虑重要的温室气体在大气中驻留时间上的差异。这里,我们通过提出甲烷、一氧化碳、一氧化二氮和含氯氟烃类相对于二氧化碳的全球变暖潜力指数,将目前的工作扩展到卤化碳的领域。例如,我们发现每摩尔甲烷的全球变暖潜力为二氧化碳的3.7倍。据此,与80年代辐射作用增加57%相对应,现在的温室气体排放引起的全球变暖的80%是二氧化碳的排放造成的。  相似文献   

6.
平流层爆发性增温中平流层环流及化学成分变化过程研究   总被引:3,自引:1,他引:2  
利用欧洲中期天气预报中心(ECMWF)气象分析场、欧洲空间局ENVISAT/MIPAS卫星观测资料以及平/对流层大气化学输送模式MOZART 3综合分析了2003—2004年冬季北半球爆发性增温事件对于平流层大气环流、物质输送以及对流层顶附近臭氧通量等多方面的影响。结果表明:①本次增温过程持续时间长、强度大,平流层极涡从高层向下逐层分裂,增温效应作用到大气较低层,当纬向东风形成并维持后极涡又自上向下逐层恢复;②SSW过程前后行星波活动频繁,有长时间多次的上传,且以1波作用为主,2波对其进行补充;③在θ PVLAT坐标中分析发现SSW扰动过程中平流层中存在一对向极、向下的传播模态,相应的对流层中有一向赤道的传播模态,不同符号的纬向风、温度异常信号沿这两个模态传播,且上、下层传播模态在时间上存在着一定的联系;④增温过程中行星波活动引起的向极输送以及极区垂直运动的变化,共同影响了平流层的物质输送过程,从而导致北半球平流层N2O、O3、CH4、H2O等微量气体成分的垂直、水平分布发生显著变化;⑤增温过程中活跃的行星波可以造成平流层Brewer Dobson环流增强,同时导致高纬度地区(60~90°N)穿越对流层顶的臭氧通量(Cross Tropopause Ozone Flux, CTOF)显著增强,与行星波相联系的等熵物质运动引起“middleworld”区域内向赤道的臭氧通量也有所增强。  相似文献   

7.
大气变暖对黑龙江上中游地区水文气象效应分析   总被引:1,自引:0,他引:1  
大气变暖对黑龙江上中游地区水文气象效应分析肖迪芳王长虹孙树森王春雷(黑龙江省黑河水文勘测大队)近十余年来,世界工业的迅速发展,地球温室气体排放量的增加和臭氧层的破坏引起的温室效应,使全球出现了增温变暖趋势[1],并影响到水文水资源状况[2]。这一问题...  相似文献   

8.
1985年10月9日至15日,在奥地利Villach,由联合国环境署(UNEP)、世界气象组织(WMO)、国家科学联盟理事会(ICSU)联合召开会议。与会的科学家来自29个发达国家和发展中国家,目的是评价不断增加的二氧化碳和大气中具有辐射作用的其它成分(温室气体)对气候变化和由此而引起的其它影响。二氧化碳和其它温室气体浓度的增长,将对下世纪上半期发生重大影响,导致气候变暖,使全  相似文献   

9.
全球变暖hiatus现象的研究进展   总被引:2,自引:0,他引:2  
进入21世纪后,全球增暖hiatus现象成为国际上气候变化研究的一个新热点。详细介绍了国际上该现象的研究进展,特别是对hiatus现象的确认研究,影响hiatus现象的辐射外强迫和气候系统海气相互作用产生的自然变率对hiatus现象的影响研究工作,最后提出了现阶段国际上对于hiatus现象的研究亟需解决的问题。造成21世纪hiatus现象的原因是在太平洋年代际振荡(PDO)的大背景场下赤道信风加强,使赤道西太平洋暖水"堆积"和赤道东太平洋变冷,造成海洋上层热量向深层传输。因此,hiatus现象并不代表全球变暖的停止,只是热量向深层海洋转移,是全球变暖的另一种表现形式。  相似文献   

10.
如果通过限制温室气体排放量来减缓全球变化的速度和规模,那么进一步就要确定应限制哪些温室气体。选择限制对象的基本原则是:(1)这种气体在温室效应的增强上起着主要作用;(2)这种气体的排放部份或全部是人类活动造成的;(3)对其进行控制是可行的。不同温室气体引起全球变暖的能力是不同的,这种能力决定于它们吸收远红外辐射的能力、在大气层中的平均寿命及其排放量。人们最关心的是今后100年内的全球气候变化。大气层中短寿命的气体即使吸收远红外辐射的能力很强,在以世纪为单位的长时间内的累积影响仍然较小。综合吸收能力与寿命两种因素可以计算出各种温室气体对全球变暖的潜在能  相似文献   

11.
《Comptes Rendus Geoscience》2018,350(7):347-353
After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.  相似文献   

12.
Two climate simulations of 150 years, performed with a coupled ocean/sea-ice/atmosphere model including stratospheric ozone, respectively with and without heterogeneous chemistry, simulate the tropospheric warming associated with an increase of the greenhouse effect of carbon dioxide and other trace gases since 1950 and their impact on sea–ice extent, as well as the stratospheric cooling and its impact on ozone concentration. The scenario with heterogeneous chemistry reproduces the formation of the ozone hole over the South Pole from the 1970s and its deepening until the present time, and shows that the ozone hole should progressively fill during the coming decades. To cite this article: J.-F. Royer et al., C. R. Geoscience 334 (2002) 147–154.  相似文献   

13.
《Comptes Rendus Geoscience》2018,350(7):442-447
The Montreal Protocol has controlled the production and consumption of ozone-depleting substances (ODSs) since its signing in 1987. The levels of most of these ODSs are now declining in the atmosphere, and there are now initial signs that ozone levels are increasing in the stratosphere. Scientific challenges remain for the Montreal Protocol. The science community projected large ozone losses if ODSs continued to increase, and that ozone levels would increase if ODSs were controlled and their levels declined. Scientists remain accountable for these projections, while they continue to refine their scientific basis. The science community remains vigilant for emerging threats to the ozone layer and seeks scientific evidence that demonstrates compliance with Montreal Protocol. As ODSs decrease, the largest impact on stratospheric ozone by the end of the 21st century will be increases in greenhouse gases. The associated climate forcings, and the human responses to these forcings, represent major uncertainties for the future of the stratospheric ozone layer.  相似文献   

14.
《Comptes Rendus Geoscience》2018,350(7):368-375
Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone.  相似文献   

15.
16.
Concern over the effects of human activities on this planet and on it's ecosystems is widespread. Changes wrought within the atmosphere are of particular concern because they have pervasive social, environmental, and economic effects; some potentially serious and very long-term. The problems they pose and the need for remedial measures creates both scientific and policy challenges. This paper bridges the two domains, outlining how the atmosphere is being changed, some of the possible consequences thereof, and actions being taken to address the issue.Emissions to the atmosphere are attacking the stratospheric ozone shield, causing acidification, spreading toxic substances and increasing the greenhouse effect. Of these concerns, the global issue of greenhouse warming will have the greatest overall impact and it the most difficult to address. While some countries have taken important preventative and mitigating measures, action on the greenhouse threat generally has been restrained because of related uncertainties, possible economic upsets and the enormity of the problem. The paper ends by noting recent international initiatives toward development of needed public policies and the roles of the scientist in addressing the issue.  相似文献   

17.
《Comptes Rendus Geoscience》2018,350(7):403-409
The stratospheric ozone layer is expected to recover as a result of the regulations of the Montreal Protocol on chlorine and bromine containing ozone-depleting substances (ODSs). Model simulations project a return of global annually averaged total column ozone to 1980 levels before the middle of the 21st century, well before the ODSs will return to 1980 levels. This earlier ozone return date is due to the effects of rising greenhouse gas (GHG) concentrations. GHGs influence ozone directly by chemical reactions, but also indirectly by changing stratospheric temperature and the Brewer–Dobson circulation. Based on projections of chemistry–climate models, this article summarizes the effects of GHGs on stratospheric and total column ozone in the mid-latitude upper stratosphere, Arctic and Antarctic spring, and the tropics. The sensitivity of future ozone change to the GHG scenario is discussed, as well as the specific role of a future increase in nitrous oxide and methane.  相似文献   

18.
平流层大气过程研究的前沿与重要性   总被引:14,自引:2,他引:12  
当前全球气候变化,重大灾害性天气气候事件的预警预测,以臭氧洞出现和臭氧层变化引起的全球环境变化监测预测,以及对临近空间的开发利用已经引起大气科学界对处于对流层大气以上的平流层大气过程的重要关注。扼要介绍了当前这方面的研究前沿和重要应用领域,最后提出我国加强平流层大气过程研究的建议。  相似文献   

19.
A comparison of tornado frequency in western Canada before and after 1980 suggests that tornado frequency increases (decreases) with positive (negative) mean monthly temperature anomalies. If climate warming occurs due to increasing greenhouse gases in the atmosphere, the inference that more tornadoes will occur seems reasonable.  相似文献   

20.
《Comptes Rendus Geoscience》2018,350(7):432-434
NASA has a long and significant history in observations and data analysis research for understanding the short- and long-term changes in ozone in the atmosphere. For nearly 40 years, NASA has overseen satellite observations of stratospheric ozone. These observations have been augmented by ground-based remote sensing, balloon borne, and aircraft observations of ozone and ozone-related species and by continuous observations of ozone depleting substances. Together, they form the evidential basis for understanding ozone changes over these past four decades. Also, NASA has continuously funded laboratory, modeling and data analysis activities to better understand the observations obtained by NASA and other programs. NASA has plans to continue these activities in the future, at a level consistent with available funding, other Earth Science observational priorities, and more importantly, with a goal of ensuring that data exist to understand changes in ozone in the future as the abundances of ozone depleting substances decrease and those of greenhouse gases increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号