首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accidental release of petroleum hydrocarbons to the subsurface may occur through spills around refineries, leaking pipelines, storage tanks, or other sources. If the spill is large, the hydrocarbon liquids may eventually reach a water table and spread laterally in a pancake-like lens. Hydrocarbons that exist as a separate phase are termed light nonaqueous phase liquids (LNAPLs). The portion of the LNAPL that is mobile, not entrapped as residual saturation, is termed "free product."
This paper presents new analytical solutions for the design of long-term free-product recovery from aquifers with skimmer, single- and dual-pump wells. The solutions are for steady-state flow, based on the assumption of vertical equilibrium, and include the effect of coning of LNAPL, air, and water on flow. The solutions are valid for soils of large hydraulic conductivity where the effect of capillary pressure on coning is small.
The results show how to estimate the maximum rate of inflow of LNAPL for skimmer wells, i.e., wells in which LNAPL is recovered with little or no water production. The paper also shows how to calculate the increase in LNAPL recovery when water is pumped by single- or dual-pump wells. A simple equation is given that can be used to adjust the water rate to avoid smearing of the LNAPL below the water table.  相似文献   

2.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   

3.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

4.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   

5.
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time‐lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time‐lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.  相似文献   

6.
Changes in Entrapped Gas Content and Hydraulic Conductivity with Pressure   总被引:1,自引:0,他引:1  
Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi‐saturated) hydraulic conductivity, Kquasi, thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand‐packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi‐saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding Kquasi ranging between 2 and 6 times lower compared to the Ks value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in Kquasi by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in Kquasi with compression–expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models.  相似文献   

7.
This study presents an extension of the concept of “quasi-saturation” to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy. Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.  相似文献   

8.
Abstract
A modular multilevel sampler was developed and utilized for sampling undisturbed ground water chemical profiles and gases in both the saturated and the unsaturated zone. Sampling at 3cm depth intervals is based on the dialysis-cell method and has no depth limitations. The sampler may be used for the development of early warning monitoring systems and research.  相似文献   

9.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

10.
11.
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.  相似文献   

12.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

13.
As high-voltage, direct-current (HVDC) electrical power transmission technology advances, the siting and design of the grounded return electrodes become critical factors. Electrode sites should be chosen where surrounding geologic conditions will not unfavorably channel large earth currents and harmfully affect nearby populations. An optimum site allows direct contact between the electrode and a large volume of a stable, low-resistivity material. A saturated alluvial zone between dry surface soils and an underlying crystalline bedrock is an ideal material for containing the current flow from the electrode.
A hydrogeologic investigation was conducted to delineate the saturated zone in several alluvial valleys in the southwestern desert region. Regional ground water flow directions, water quality, and seasonal fluctuations of the water table elevations were determined. The structural shape and topography of the crystalline basement beneath the valleys were interpreted from gravity data. Iterative forward-modeling of the data provided a low-cost means of deducing the volume of the lightweight alluvium. Electrical resistivity surveys were completed to measure the lateral and vertical variations in soil resistivities throughout the valleys. The geophysical data were used to extend the known hydrologic information into areas with no wells.
Composite models of the saturated zones in each valley were produced by integrating gravity interpretations with hydrologic and resistivity results. The composite models were used to predict current density in the ground that would be associated with a HVDC electrode. This methodology proved to be a cost-effective means of siting electrodes in a suitable geologic environment that would minimize their detrimental effects.  相似文献   

14.
It is well known that the generation of excess pore water pressure and/or liquefaction in foundation soils during an earthquake often cause structural failures.This paper describes the behavior of a small-scale braced wall embedded in saturated liquefiable sand under dynamic condition.Shake table tests are performed in the laboratory on embedded retaining walls with single bracing.The tests are conducted for different excavation depths and base motions.The influences of the peak magnitude of the ground motions and the excavation depth on the axial forces in the bracing,the lateral displacement and the bending moments in the braced walls are studied.The shake table tests are simulated numerically using FLAC 2D and the results are compared with the corresponding experimental results.The pore water pressures developed in the soil are found to influence the behavior of the braced wall structures during a dynamic event.It is found that the excess pore water pressure development in the soil below the excavation is higher compared to the soil beside the walls.Thus,the soil below the excavation level is more susceptible to the liquefaction compared to the soil beside the walls.  相似文献   

15.
液化场地土-地铁车站结构大型振动台模型试验研究   总被引:5,自引:2,他引:5  
本文对浅埋于可液化南京细砂地基中的地铁车站结构进行了大型振动台试验研究,对部分试验结果进行了整理,分析了模型地基的加速度和振动孔隙水压力的反应规律。试验结果表明:在整个试验过程中,模型地基浅层土和地铁车站侧向附近地基土最容易发生液化;其次,随着振动台台面输入地震动峰值加速度的增大,离车站结构较远的侧向地基土和底层地基土再发生液化,而车站结构正下方的模型地基土最不容易液化。同时,在模型地基土发生液化后,地铁车站结构发生了明显的整体上浮现象。  相似文献   

16.
Strawberry Point, located on Hinchinbrook Island, Alaska, is the site of a Federal Aviation Administration air navigation facility that is contaminated with gasoline- and diesel-range hydrocarbons in soil and ground water. An air sparging system was installed to promote bioremediation in the zone of seasonal ground water fluctuation where the contaminant is concentrated. The sparge wells were placed in a homogeneous formation, consisting of fine-grain beach and eolian sands. The system was then evaluated to determine the ground water region of influence and optimum frequency of operation. Neutron probe borehole measurements of percentage; of fluid displacement during sparging at two wells revealed dynamic air distributions defined by an initial and relatively rapid expansion phase followed by a consolidation phase. Air distribution was stable within 12 hours after startup, reaching a peak air saturation of greater than 50 percent. The radius of peak expansion varied with time and depth, with measurable fluid displacement occurring beyond 12 feel from the sparge well near the water table. The percentage of air saturation stabilized within one hour following cutoff of the air flow, leaving pockets of entrapped air near the water table. When air injection was resumed, air saturation levels were found to be repeatable. The observations at this site indicated that the effective region of influence is relatively small and that frequent pulsing is needed to optimize oxygen distribution.  相似文献   

17.
A New Method for Collecting Core Samples Without a Drilling Rig   总被引:1,自引:0,他引:1  
A new piston sampler allows the collection of high-quality core samples from sand, silt or clay, up to depths of 18 meters. The sampler is operated by a one- or two-person crew without a drilling rig. The sampler and ancillary equipment fit easily into a half-ton truck, making this a highly portable sampling system. Other advantages include minimal mechanical disturbance and precisely known sample depth. Casing is not required to maintain an open corehole below the water table and drilling fluid is not used in the corehole, so the solids and pore water of the sample should not be contaminated by foreign fluids. High-quality samples for physical, geochemical, and microbiological characterization of the subsurface are easily obtained with this new device.  相似文献   

18.
Shah N  Nachabe M  Ross M 《Ground water》2007,45(3):329-338
In many landscapes, vegetation extracts water from both the unsaturated and the saturated zones. The partitioning of evapotranspiration (ET) into vadose zone evapotranspiration and ground water evapotranspiration (GWET) is complex because it depends on land cover and subsurface characteristics. Traditionally, the GWET fraction is assumed to decay with increasing depth to the water table (DTWT), attaining a value of 0 at what is termed the extinction depth. A simple assumption of linear decay with depth is often used but has never been rigorously examined using unsaturated-saturated flow simulations. Furthermore, it is not well understood how to relate extinction depths to characteristics of land cover and soil texture. In this work, variable saturation flow theory is used to simulate GWET for three land covers and a range of soil properties under drying soil conditions. For a water table within half a meter of the land surface, nearly all ET is extracted from ground water due to the close hydraulic connection between the unsaturated and the saturated zones. For deep-rooted vegetation, the decoupling of ground water and vadose zone was found to begin at water table depths between 30 and 100 cm, depending on the soil texture. The decline of ET with DTWT is better simulated by an exponential decay function than the commonly used linear decay. A comparison with field data is consistent with the findings of this study. Tables are provided to vary the extinction depth for heterogeneous landscapes with different vegetation cover and soil properties.  相似文献   

19.
Waste disposal sites with volatile organic compounds (VOCs) frequently contain contaminants that are present in both the ground water and vadose zone. Vertical sampling is useful where transport of VOCs in the vadose zone may effect ground water and where steep vertical gradients in chemical concentrations are anticipated. Designs for combination ground water and gas sampling wells place the tubing inside the casing with the sample port penetrating the casing for sampling. This physically interferes with pump or sampler placement. This paper describes a well design that combines a ground water well with gas sampling ports by attaching the gas sampling tubing and ports to the exterior of the casing. Placement of the tubing on the exterior of the casing allows exact definition of gas port depth, reduces physical interference between the various monitoring equipment, and allows simultaneous remediation and monitoring in a single well. The usefulness and versatility of this design was demonstrated at the Idaho National Engineering and Environmental Laboratory (INEEL) with the installation of seven wells with 53 gas ports, in a geologic formation consisting of deep basalt with sedimentary interbeds at depths from 7.2 to 178 m below land surface. The INEEL combination well design is easy to construct, install, and operate.  相似文献   

20.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号