首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Drought over a period threatens the water resources, agriculture, and socioeconomic activities. Therefore, it is crucial for decision makers to have a realistic anticipation of drought events to mitigate its impacts. Hence, this research aims at using the standardized precipitation index (SPI) to predict drought through time series analysis techniques. These adopted techniques are autoregressive integrating moving average (ARIMA) and feed-forward backpropagation neural network (FBNN) with different activation functions (sigmoid, bipolar sigmoid, and hyperbolic tangent). After that, the adequacy of these two techniques in predicting the drought conditions has been examined under arid ecosystems. The monthly precipitation data used in calculating the SPI time series (SPI 3, 6, 12, and 24 timescales) have been obtained from the tropical rainfall measuring mission (TRMM). The prediction of SPI was carried out and compared over six lead times from 1 to 6 using the model performance statistics (coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE)). The overall results prove an excellent performance of both predicting models for anticipating the drought conditions concerning model accuracy measures. Despite this, the FBNN models remain somewhat better than ARIMA models with R?≥?0.7865, MAE?≤?1.0637, and RMSE?≤?1.2466. Additionally, the FBNN based on hyperbolic tangent activation function demonstrated the best similarity between actual and predicted for SPI 24 by 98.44%. Eventually, all the activation function of FBNN models has good results respecting the SPI prediction with a small degree of variation among timescales. Therefore, any of these activation functions can be used equally even if the sigmoid and bipolar sigmoid functions are manifesting less adjusted R2 and higher errors (MAE and RMSE). In conclusion, the FBNN can be considered a promising technique for predicting the SPI as a drought monitoring index under arid ecosystems.  相似文献   

2.
In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems.  相似文献   

3.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   

4.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   

5.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

6.
Accurate and reliable prediction of shallow groundwater level is a critical component in water resources management. Two nonlinear models, WA–ANN method based on discrete wavelet transform (WA) and artificial neural network (ANN) and integrated time series (ITS) model, were developed to predict groundwater level fluctuations of a shallow coastal aquifer (Fujian Province, China). The two models were testified with the monitored groundwater level from 2000 to 2011. Two representative wells are selected with different locations within the study area. The error criteria were estimated using the coefficient of determination (R 2), Nash–Sutcliffe model efficiency coefficient (E), and root-mean-square error (RMSE). The best model was determined based on the RMSE of prediction using independent test data set. The WA–ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ITS models. The results of the study indicate the potential of WA–ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.  相似文献   

7.
Drought is accounted as one of the most natural hazards. Studying on drought is important for designing and managing of water resources systems. This research is carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference system (ANFIS) techniques for meteorological drought forecasting in southeastern part of East Azerbaijan province, Iran. The Wavelet-ANN and ANFIS models were first trained using the observed data recorded from 1952 to 1992 and then used to predict meteorological drought over the test period extending from 1992 to 2011. The performances of the different models were evaluated by comparing the corresponding values of root mean squared error coefficient of determination (R 2) and Nash–Sutcliffe model efficiency coefficient. In this study, more than 1,000 model structures including artificial neural network (ANN), adaptive neural-fuzzy inference system (ANFIS) and Wavelet-ANN models were tested in order to assess their ability to forecast the meteorological drought for one, two, and three time steps (6 months) ahead. It was demonstrated that wavelet transform can improve meteorological drought modeling. It was also shown that ANFIS models provided more accurate predictions than ANN models. This study confirmed that the optimum number of neurons in the hidden layer could not be always determined using specific formulas; hence, it should be determined using a trial-and-error method. Also, decomposition level in wavelet transform should be delineated according to the periodicity and seasonality of data series. The order of models with regard to their accuracy is as following: Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively. To the best of our knowledge, no research has been published that explores coupling wavelet analysis with ANFIS for meteorological drought and no research has tested the efficiency of these models to forecast the meteorological drought in different time scales as of yet.  相似文献   

8.
The purpose of this paper is to provide a proper, practical and convenient drilling rate index (DRI) prediction model based on rock material properties. In order to obtain this purpose, 47 DRI tests were used. In addition, the relevant strength properties i.e. uniaxial compressive strength and Brazilian tensile strength were also used and selected as input parameters to predict DRI. Examined simple regression analysis showed that the relationships between the DRI and predictors are statistically meaningful but not good enough for DRI estimation in practice. Moreover, multiple regression, artificial neural network (ANN) and hybrid genetic algorithm (GA)-ANN models were constructed to estimate DRI. Several performance indices i.e. coefficient of determination (R2), root mean square error and variance account for were used for evaluation of performance prediction the proposed methods. Based on these results and the use of simple ranking procedure, the best models were chosen. It was found that the hybrid GA-ANN technique can performed better in predicting DRI compared to other developed models. This is because of the fact that the proposed hybrid model can update the biases and weights of the network connection to train by ANN.  相似文献   

9.
The sign and the magnitude of the zeta potential must be known for many engineering applications. For clay soils, it is usually negative, but it is strongly dependent on the pore fluid chemistry. However, measurement of zeta potential time is time-consuming and requires special and expensive equipment. In this study, the prediction of zeta potential of kaolinite has been investigated by artificial neural networks (ANNs) and multiple regression analyses (MRAs). To achieve this, ANN and MRA models based on zeta potential measurements of kaolinite in the presence of salt and heavy metal cations at different pH values have been developed. The results of the models were compared with the experimental results. The performance indices, including coefficient of determination, root mean square error, mean absolute error, and variance, were used to assess the performance of the prediction capacity of the models developed in this study. The obtained indices make it clear that the constructed ANN models were able to predict zeta potential of kaolinite quite efficiently and outperformed the MRA models. Results showed that ANN models can be used satisfactorily to predict zeta potential of kaolinite as a rapid inexpensive substitute for laboratory techniques.  相似文献   

10.
The accurate forecasting of typhoon inundation levels is vital for damage mitigation actions during such an event. The objective of this paper is to investigate the characteristics of adaptive network-based fuzzy inference system models for the forecasting of typhoon inundation levels. A novel approach of recursively using the model to achieve higher prediction lead times is proposed. The approach is advantageous in conducting water level forecasts for various prediction lead times using a single model, whereas common non-recursive models are only applicable for the designed prediction leads. In this study, a total of 6 models, with various configurations and types of recursions, are constructed based on the cross-correlations between rainfall and water level records. The performance of each model is evaluated and compared using three indices: coefficient of efficiency, relative time shift, and threshold statistics. The best recursive and non-recursive models are selected and compared with traditional approaches based on autoregressive models with exogenous input. The results show that although the recursive models display somewhat lesser but comparable forecasting capacities compared to the non-recursive models, the former models have achieved forecasts single handedly for all the prediction leads using single models only. On the other hand, although the non-recursive models exhibit better forecasting capacities, this is at the cost of using multiple models, with each designed for a specific prediction lead time. In comparison with other traditional approaches, both the recursive and non-recursive types of models demonstrate superior performance on all the aspects inspected.  相似文献   

11.
In this paper, we have utilized ANN (artificial neural network) modeling for the prediction of monthly rainfall in Mashhad synoptic station which is located in Iran. To achieve this black-box model, we have used monthly rainfall data from 1953 to 2003 for this synoptic station. First, the Hurst rescaled range statistical (R/S) analysis is used to evaluate the predictability of the collected data. Then, to extract the rainfall dynamic of this station using ANN modeling, a three-layer feed-forward perceptron network with back propagation algorithm is utilized. Using this ANN structure as a black-box model, we have realized the complex dynamics of rainfall through the past information of the system. The approach employs the gradient decent algorithm to train the network. Trying different parameters, two structures, M531 and M741, have been selected which give the best estimation performance. The performance statistical analysis of the obtained models shows with the best tuning of the developed monthly prediction model the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) are 0.93, 0.99, and 6.02 mm, respectively, which confirms the effectiveness of the developed models.  相似文献   

12.
In this study, the zeta potential of montmorillonite in the presence of different chemical solutions was modeled by means of artificial neural networks (ANNs). Zeta potential of the montmorillonite was measured in the presence of salt cations, Na+, Li+ and Ca2+ and metals Zn2+, Pb2+, Cu2+, and Al3+ at different pH values, and observed values pointed to a different behavior for this mineral in the presence of salt and heavy metal cations. Artificial neural networks were successfully developed for the prediction of the zeta potential of montmorillonite in the presence of salt and heavy metal cations at different pH values and ionic strengths. Resulting zeta potential of montmorillonite shows different behavior in the presence of salt and heavy metal cations, and two ANN models were developed in order to be compared with experimental results. The ANNs results were found to be close to experimentally measured zeta potential values. The performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance account for were used to control the performance of the prediction capacity of the models developed in this study. These indices obtained make it clear that the predictive models constructed are quite powerful. The constructed ANN models exhibited a high performance according to the performance indices. This performance has also shown that the ANNs seem to be a useful tool to minimize the uncertainties encountered during the soil engineering projects. For this reason, the use of ANNs may provide new approaches and methodologies.  相似文献   

13.
The present research was carried out by using artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), cokriging (CK) and ordinary kriging (OK) using the rainfall and streamflow data for suspended sediment load forecasting. For this reason, the time series of daily rainfall (mm), streamflow (m3/s), and suspended sediment load (tons/day) data were used from the Kojor forest watershed near the Caspian Sea between 28 October 2007 and 21 September 2010 (776 days). Root mean square error, efficiency coefficient, mean absolute error, and mean relative error statistics are used for evaluating the accuracy of the ANN, ANFIS, CK, and OK models. In the first part of the study, various combinations of current daily rainfall, streamflow and past daily rainfall, streamflow data are used as inputs to the neural network and neuro-fuzzy computing technique so as to estimate current suspended sediment. Also, the accuracy of the ANN and ANFIS models are compared together in suspended sediment load forecasting. Comparison results reveal that the ANFIS model provided better estimation than the ANN model. In the second part of the study, the ANN and ANFIS models are compared with OK and CK. The comparison results reveal that CK was a better estimation than the OK. The ANFIS and ANN models also provided better estimation than the OK and CK models.  相似文献   

14.

Drought monitoring is carried out using various drought indices, including SPI, to generate time series of dry and wet periods. Furthermore, the dispersion of dry and wet periods was embossed with different intensities (high, medium, and low) over the data record years. Although these results were very necessary for planning and predicting future droughts, it appeared that the application of any trend over dry and wet periods could provide more accurate and unbiased or safer predictions in terms of analysis process. Generally, most of the researchers believed that the results of a drought trend analysis have been influenced by short-term persistence or significant autocorrelation with different lags on drought event time series and the mentioned impact should be preferably removed. Accordingly, drought monitoring was accomplished using SPI and PNPI drought indices to extract time series of dry and wet periods in terms of 50-year (1965–2014) annual rainfall data of 40 synoptic stations over Iran. Having used the basic and modified Mann–Kendall nonparametric tests, it was attempted to analyze the trend of dry and wet periods extracted from mentioned indices. The results represent the relative advantage of using the modified Mann–Kendall test in drought trend analysis. Furthermore, it was shown that the trend of dry and wet periods was negative in the majority of selected stations and that this trend was significant at 95% confidence level in northwest of Iran. Also, the results indicated the similar performance of SPI and PNPI indices in trend analysis of dry and wet periods.

  相似文献   

15.
The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awareness of groundwater level. In this study, we have applied artificial neural networks (ANN) and autoregressive integrated moving average (ARIMA) models for groundwater level forecasting to 4 months ahead in Shiraz basin, southwestern Iran. Time series analysis was conducted according to the Box–Jenkins method. Meanwhile, gamma and M-test were considered for determining the optimal input combination and length of training and testing data in the ANN model. The results indicated that performance of multilayer perceptron neural network (4, 14, 1) and ARIMA (2, 1, 2) is satisfactory in the groundwater level forecasting for one month ahead. The performance comparison shows that the ARIMA model performs appreciably better than the ANN.  相似文献   

16.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   

17.
This paper aims to provide a spatial and temporal analysis to prediction of monthly precipitation data which are measured at irregularly spaced synoptic stations at discrete time points. In the present study, the rainfall data were used which were observed at four stations over the Qara-Qum catchment, located in the northeast of Iran. Several models can be used to spatially and temporally predict the precipitation data. For temporal analysis, the wavelet transform with artificial neural network (WTANN) framework combines with the wavelet transform, and an artificial neural network (ANN) is used to analyze the nonstationary precipitation time-series. The time series of dew point, temperature, and wind speed are also considered as ancillary variables in temporal prediction. Furthermore, an artificial neural network model was used for comparing the results of the WTANN model. Therefore, four models were developed, including WTANN and ANN with and without ancillary data. Several statistical methods were used for comparing the results of the temporal analysis. It was evident that at three of the four stations, the WTANN models were more effective than the ANN models, and only at one station, the ANN model with ancillary data had better performance than the WTANN model without ancillary data. The values of correlation coefficient and RMSE for WTANN model with ancillary data for the validation period at Mashhad station which showed the best results were equal to 0.787 and 13.525 mm, respectively. Finally, an artificial neural network model was used as an alternative interpolating technique for spatial analysis.  相似文献   

18.
Zhu  Bangyan  Chu  Zhengwei  Shen  Fei  Tang  Wei  Wang  Bin  Wang  Xiao 《Natural Hazards》2019,99(1):379-389

Droughts are hindrances to economic and social developments in many parts of the world, especially in developing nations like Kenya. In North Eastern Kenya (NEK), drought is very prevalent. The communities in the region are mainly dependent on animal farming, and drought occurrence leads to great socioeconomic setback. Drought indices used in most studies consider rainfall as the only parameter for assessing drought occurrences. This study analyzes drought in NEK using the Standardized Precipitation Index (SPI) and the Combined Drought Index (CDI) using rainfall and temperature values and Normalized Difference Vegetation Index values for the period 1980–2010. The results of the two indices show significant correlation. However, CDI is preferred in the analysis of the drought compared to the SPI as it gives drought in more detail, showing extreme, severe, moderate and mild. The study recommends the use of the two methods independently since they give similar results and further recommends trial in other parts of the country affected by drought.

  相似文献   

19.
Most of the water quality models previously developed and used in dissolved oxygen (DO) prediction are complex. Moreover, reliable data available to develop/calibrate new DO models is scarce. Therefore, there is a need to study and develop models that can handle easily measurable parameters of a particular site, even with short length. In recent decades, computational intelligence techniques, as effective approaches for predicting complicated and significant indicator of the state of aquatic ecosystems such as DO, have created a great change in predictions. In this study, three different AI methods comprising: (1) two types of artificial neural networks (ANN) namely multi linear perceptron (MLP) and radial based function (RBF); (2) an advancement of genetic programming namely linear genetic programming (LGP); and (3) a support vector machine (SVM) technique were used for DO prediction in Delaware River located at Trenton, USA. For evaluating the performance of the proposed models, root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NS), mean absolute relative error (MARE) and, correlation coefficient statistics (R) were used to choose the best predictive model. The comparison of estimation accuracies of various intelligence models illustrated that the SVM was able to develop the most accurate model in DO estimation in comparison to other models. Also, it was found that the LGP model performs better than the both ANNs models. For example, the determination coefficient was 0.99 for the best SVM model, while it was 0.96, 0.91 and 0.81 for the best LGP, MLP and RBF models, respectively. In general, the results indicated that an SVM model could be employed satisfactorily in DO estimation.  相似文献   

20.
随着土地开发建设规模不断扩大,土地利用情况也在逐年发生变化,准确预测未来土地利用的发展趋势,可以为本地区的土地利用规划提供依据,提升本地区的土地利用效率。传统方法一般采用CA_Markov、ANN以及CA_ANN模型进行预测,存在训练时间长、预测精度不足和缺乏说服力等问题。本文针对上述问题,结合元胞自动机以及人工神经网络模型,建立一种自适应可变滤镜网络模型,针对特定大小区域内的土地类别数目,创建多类数据集来训练不同参数的多个神经网络,可以成功预测未来土地变化的情况,这样就避免了训练单一网络时数据对网络权值的抵消。相比于传统模型中效果最好的CA_ANN模型,本文建立的自适应可变滤镜网络模型不仅总体精度提高了1%~3%,各种地类转化精度提高了12.82%~33.33%,模型预测时间也缩减了49.47%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号