首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atmospheric hydroxyl (OH), hydroperoxy (HO2), total peroxy (HO2 and organic peroxy radicals, RO2) mixing ratios and OH reactivity (first order OH loss rate) were measured at a rural site in central Pennsylvania during May and June 2002. OH and HO2 mixing ratios were measured with laser induced fluorescence (LIF); HO2 + RO2 mixing ratios were measured with chemical ionization mass spectrometry (CIMS). The daytime maximum mixing ratios were up to 0.6 parts per trillion by volume (pptv) for OH, 30 pptv for HO2, and 45 pptv for HO2 + RO2. A parameterized RACM (Regional Atmospheric Chemistry Mechanism) box model was used to predict steady state OH, HO2 and HO2 + RO2 concentrations by constraining the model to the measured OH reactivity and previously measured volatile organic compound (VOC) distributions. The averaged model calculations are generally in good agreement with the observations. For OH, the model matched the observations for day and night, with an average observed-to-modeled ratio of 0.80. In previous studies such as PROPHET98, nighttime NO was near 0 pptv and observed nighttime OH was significantly larger than modeled OH. In this study, nighttime observed and modeled OH agree to within measurement and model uncertainties because the main source of the nighttime OH was the reaction HO2 + NO → OH + NO2, with the NO being continually emitted from the surrounding fertilized corn field. The observed-to-modeled ratio for HO2 is 1.0 on average, although daytime HO2 is underpredicted by a factor of 1.2 and nighttime HO2 is over-predicted by a factor of ∼2. The average measured and modeled HO2 + RO2 agree well during daytime, but the modeled value is about twice the measured value during nighttime. While measured HO2 + RO2 values agree with modeled values for NO mixing ratios less than a few parts per billion by volume (ppbv), it increases substantially above the expected value for NO greater than a few ppbv. This observation of the higher-than-expected HO2 + RO2 with the CIMS technique confirms the observed increase of HO2 above expected values at higher NO mixing ratios in HO2 measurements with the LIF technique. The maximum instantaneous O3 production rate calculated from HO2 and RO2 reactions with NO was as high as 10–15 ppb h−1 at midday; the total daily O3 production varied from 13 to 113 ppbv d−1 and was 48 ppbv d−1 on average during this campaign.  相似文献   

2.
Photochemical box modelling was undertaken to investigate OH and HO2 radical chemistry during summer and winter field campaigns in the urban city-centre of Birmingham in the UK. The model employed the most recent version of the Master Chemical Mechanism (v3.1) and was constrained to 15-minute average measurements of long-lived species determined in situ at the site. The model was used to predict OH and HO2 concentrations for comparison with measurements made by the fluorescence assay by gas expansion technique. Whilst there was generally good agreement between the modelled and measured OH concentrations, particularly during summer, there was sometimes a significant model under-prediction during daylight hours, which significantly skews the overall model: measured agreement. There were less measured data available for HO2, but the agreement between model and measurement for the days where measurements existed were less good than for OH, with one or two exceptions. The modelled:measured ratios between the hours of 11:00–15:00 h for OH were 0.58 and 0.50 for summer and winter respectively. For HO2, the same ratios were 0.56 in the summer and 0.49 in the winter. Sensitivity studies were conducted to attempt to understand the model-measurement discrepancy. The predicted radical concentrations were particularly sensitive to changes in NOX concentrations. Constraining the model to the observed HO2 concentrations made the OH predictions worse. These results highlight the fact that there are many complexities in urban areas and that more highly-instrumented campaigns are required in the future to further our understanding.  相似文献   

3.
An instrument is developed for the measurement of peroxy radical using chemical amplification coupled with NO2-luminol chemiluminescence detection. The chain length of 147 ± 10 (1σ) is determined by an HO2 source that uses the photolysis of water vapor under 184.9 nm in air. A Nafion system equipped with a Nafion tube of ~2.2 mm external diameter and 350 mm length is employed in the PERCA instrument (Nafion-PERCA system). When flowing an air sample containing HO2 through the Nafion system, it is found that - 94.6 % of HO2 is removed. In contrast, only 17.8 % of RO2 radicals (a mixtures of CH3O2 and CH3C(O)O2 with a ratio of 1.1:0.9) are removed. The results indicate the Nafion system has a good selective removing performance of HO2 radical during the PERCA measurement. Therefore, the method could be applied to ambient and laboratory measurements of absolute concentrations of RO2 as well as the sum of HO2 and RO2.  相似文献   

4.
A detailed photochemical box model was used to investigate the key reaction pathways between OH, HO2 and RO2 radicals during the summer and winter PUMA field campaigns in the urban city-centre of Birmingham in the UK. The model employed the most recent version of the Master Chemical Mechanism and was constrained to 15-minute average measurements of long-lived species determined in situ at the site. The results showed that in the summer, OH initiation was dominated by the reactions of ozone with alkenes, nitrous acid (HONO) photolysis and the reaction of excited oxygen atoms atoms with water. In the winter, ozone+alkene reactions were the primary initiation route, with a minor contribution from HONO photolysis. Photolysis of aldehydes was the main initiation route for HO2, in both summer and winter. RO2 initiation was dominated by the photolysis of aldehydes in the summer with a smaller contribution from ozone+alkenes, a situation that was reversed in the winter. At night, ozone+alkene reactions were the main radical source. Termination, under all conditions, primarily involved reactions with NO (OH) and NO2 (OH and RCO3). These results demonstrate the importance of ozone+alkene reactions in urban atmospheres, particularly when photolysis reactions were less important during winter and at nighttime. The implications for urban atmospheric chemistry are discussed.  相似文献   

5.
Shipboard measurements of atmospheric dimethyl sulfide were made during two transects along the east coast of the United States and at several stations in the Gulf of Maine. Limited measurements of carbon disulfide and hydrogen sulfide are also reported. The mean DMS mixing ratio was 29 pptv (=25, n=84, median 19 pptv) during the Atlantic transects, and 101 pptv (=67, n=77, median 79 pptv) in the Gulf of Maine. Distinct diurnal variations were found in the DMS data from the transects. The meteorology of the study area appears to control day-to-day differences in the magnitude of these diurnal variations, although rapid daytime oxidation is suggested in some cases. Diurnal variations were also evident in near-shore stations in the Gulf of Maine due to nocturnal boundary-layer inversion. Diurnal variation was not evident at other sites in the Gulf due to large scale changes in the atmospheric circulation pattern, which effectively masked any effects due to oxidation processes. Model simulations confirm that the DMS levels and diurnal variation found during the transects are not consistent with atmospheric oxidation processes alone. Atmospheric CS2 and H2S mixing ratios were less than 3 pptv during the transects, except for a single period of higher CS2 mixing ratios (reaching 11 pptv) during advection of continental air. Calculations of the flux of oceanic sulfur to the eastern United States show that the contribution of natural sulfur to the North American sulfur budget is small compared to anthropogenic sources.  相似文献   

6.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

7.
Measurements of biogenic gases including enantiomeric monoterpenes and isoprene, and anthropogenic gases such as benzene, toluene, ethylbenzene, ortho-, meta- and para- xylene (BTEX) compounds were made by GC-MS in November and December 2008 within a stone pine (Pinus pinea L) forest located on the Southwest coast of Spain (37.10°N, 6.70°W). Mixing ratios of the biogenic species were found to be low (mean circa 10 pptv) consistent with previously observed low wintertime regional forest emission rates. In contrast, anthropogenic species were significantly higher (mean 10–156 pptv), the dominant emissions originating from the city of Huelva and associated petrochemical activities, located 25 km north west of the measurement site. In wintertime the monoterpene (?)-α-pinene was found to be in slight enantiomeric excess over (+)-α-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (?)-α-pinene. This indicates a strong seasonal variance in the enantiomeric emission ratio which is not manifested in the day/night temperature cycles in wintertime. Mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the beta-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed.  相似文献   

8.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10?13 cm3 molecule?1 s?1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10?13 cm3 molecule?1 s?1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?2 d?1 for CH2I2 and 3.7 +/? 0.8 nmol m?2 d?1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2–4 × 10?13 cm3 molecule?1 s?1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.  相似文献   

9.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

10.
A series of 72 measurements of the acetaldehyde (CH3CHO) mixing ratio were made in the lower troposphere during TROPOZ II. These measurements are the first ever made of the background level of this trace gas in the free troposphere. The data show a vertical decrease of the CH3CHO mixing ratio with increasing altitude and indicate higher CH3CHO concentrations in the Northern Hemisphere — in general agreement with a model-derived average CH3CHO distribution. Deviations of the observed CH3CHO mixing ratios from the modelled mean distribution are correlated with similar deviations in the corresponding HCHO mixing ratios.  相似文献   

11.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

12.
A series of 149 measurements of the HCHO mixing ratio were made between 0 and 10 km altitude and 70° N to 60° S latitude during TROPOZ II. The data show a vertical decrease of the HCHO mixing ratio with altitude at all latitudes and a broad latitudinal maximum in the HCHO mixing ratio between 30° N and 30° S at all altitudes. The measured mixing ratios of HCHO are considerably higher than those expected from CH4 oxidation alone, but agree broadly with the average latitude by altitude distribution of HCHO derived by a 2D model including emissions of C1–C7 hydrocarbons. A number of the regional scale deviations of the measured HCHO distribution from the average modelled one can be explained in terms of the local wind field.  相似文献   

13.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

14.
Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
  1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
  2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
  3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
  相似文献   

15.
16.
The 2.4-dinitrophenylhydrazine coated silica cartridge technique (DSC) was used for the measurements of HCHO and CH3CHO during the POPCORN campaign in August 1994. A total number of 505 measurements was carried out using an automatic sampling system. The sampling time for each measurement was 30 minutes. During the first two weeks of the campaign samples were taken every 3 hours and during the last two weeks every 30 minutes. No significant diurnal variation of HCHO and CH3CHO was observed. The average mixing ratios of HCHO and CH3CHO were 1.8 ±1.0 ppb and 1.4 ±1.3 ppb. The results for HCHO are in a good agreement with simultaneous measurements by differential optical absorption spectroscopy (DOAS). The absence of a strong diurnal variation of the HCHO mixing ratio can be explained by production and destruction processes during day and night. The measured mixing ratios of HCHO and CH3CHO, especially the mixing ratios during night, are a strong indication that during the POPCORN campaign the maize was a local source of HCHO and CH3CHO.  相似文献   

17.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9?×?106 molecule cm?3 and 6?×?108 molecule cm?3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.  相似文献   

18.
A photochemical box model has been used to model themeasured diurnal ozone cycle in spring at Jungfraujochin the Swiss Alps. The comparison of the modelleddiurnal ozone cycle with the mean measured diurnalozone cycle in spring, over the period 1988–1996,shows a good agreement both with regard to the shapeand amplitude. Ozone concentrations increase duringthe daytime and reach a maximum at about 16:00–17:00(GMT) in both the modelled and the mean observed ozonecycle, indicative of net ozone production during thedaytime at Jungfraujoch in spring. The agreement isbetter when the modelled ozone cycle is compared withthe mean measured diurnal cycle (1988–1996) filteredfor north-westerly winds >5 m/s (representative ofregional background conditions at Jungfraujoch). Inaddition to ozone, the modelled diurnal cycle of[HO2] + [CH3O2] also shows rather goodagreement with the mean diurnal cycle of the peroxyradicals measured during FREETEX '96, a FREETropopsheric Experiment at Jungfraujoch in April/May1996. Furthermore, this mean diurnal cycle of the sumof the peroxy radicals measured during FREETEX '96 isused to calculate, using steady-state expressions, therespective diurnal cycle of the OH radical. Thecomparison of the OH diurnal cycle, calculated fromthe peroxy radical measurements during FREETEX '96,with the modelled one, reveals also good agreement.The net ozone production rate during the day-time is0.27 ppbv h-1 from the model, and 0.13 ppbvh-1 from the observations during FREETEX '96. Theobservations and model results both suggest that thediurnal ozone variation in spring at Jungfraujoch isprimarily of photochemical origin. Furthermore, theobserved and modelled positive net ozone productionrates imply that tropospheric in situphotochemistry contributes significantly to theobserved high spring ozone values in the observedbroad spring-summer ozone maximum at Jungfraujoch.  相似文献   

19.
Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m?2 h?1 for isoprene, and 0.48 and 0.47 mg m?2 h?1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.  相似文献   

20.
Formaldehyde (HCHO), acetaldehyde (CH3CHO) and acetone (CH3COCH3) were measured at Wanqingsha (WQS) in south China during November-December 2008–2010. Carbonyl compound pollution characteristics under the influence of the financial crisis (FC) were studied. Atmospheric carbonyl compound concentrations in the 2008 and 2009 sampling periods were affected by the 2008 FC. The industrial downturn plus the high closing down number of the small enterprises with limited emission treatment during the FC played an important role in the reduction of the industry-related CH3CHO and CH3COCH3. In 2010, the recovery of industrial activities occurred, but affected by traffic restriction enforcement in Guangzhou over the Asian Games period, HCHO concentration (daytime 7.59?±?2.59 μg m?3) was lower than expectation. Carbonyl compounds in WQS site were highly influenced by regional pollution transport from different upwind urban cities and industrial districts in the north-northwest to northeast wind sector in winter. Also, the interaction of the winter monsoon with the warm ocean along the coastline as well as day and night boundary layer mixing height variation affected carbonyl compound concentrations in WQS. The daytime mean dry deposition losses of HCHO and CH3CHO were first time model-estimated for 2009 and 2010. For loss of HCHO in the early afternoon, photolysis was the dominant sink, followed by dry deposition and removal by OH radical (?OH), while for CH3CHO, dry deposition was dominant. For the gain of HCHO and CH3CHO, the production rates during early afternoon in 2009 and 2010 were estimated by an indirect approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号