首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measurements of formaldehyde (HCHO) were made at the Cape Verde Atmospheric Observatory between November 2006 and June 2007 using the Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) technique. Observations show that typical HCHO mixing ratios ranged between 350 and 550 pptv (with typical 2-σ uncertainties of ~110 pptv), with several events of high HCHO, the maximum being 1,885?±?149 pptv. The observations indicate a lack of strong seasonal or diurnal variations, within the uncertainty of the measurements. A box model is employed to test whether the observations can be explained using known hydrocarbon photochemistry; the model replicates well the typical diurnal profile and monthly mean values. The model results indicate that on average 20% of HO2 production and 10% of OH destruction can be attributed to the mean HCHO levels, suggesting that even at these low average mixing ratios HCHO plays an important role in determining the HOx (HO2+OH) balance of the remote marine boundary layer.  相似文献   

2.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

3.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

4.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

5.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

6.
A detailed photochemical box model was used to investigate the key reaction pathways between OH, HO2 and RO2 radicals during the summer and winter PUMA field campaigns in the urban city-centre of Birmingham in the UK. The model employed the most recent version of the Master Chemical Mechanism and was constrained to 15-minute average measurements of long-lived species determined in situ at the site. The results showed that in the summer, OH initiation was dominated by the reactions of ozone with alkenes, nitrous acid (HONO) photolysis and the reaction of excited oxygen atoms atoms with water. In the winter, ozone+alkene reactions were the primary initiation route, with a minor contribution from HONO photolysis. Photolysis of aldehydes was the main initiation route for HO2, in both summer and winter. RO2 initiation was dominated by the photolysis of aldehydes in the summer with a smaller contribution from ozone+alkenes, a situation that was reversed in the winter. At night, ozone+alkene reactions were the main radical source. Termination, under all conditions, primarily involved reactions with NO (OH) and NO2 (OH and RCO3). These results demonstrate the importance of ozone+alkene reactions in urban atmospheres, particularly when photolysis reactions were less important during winter and at nighttime. The implications for urban atmospheric chemistry are discussed.  相似文献   

7.
High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2,RO2) radicals (ROx =OH + HO2 + RO2) and the ozone production rate [P(O3)],but few studies have investigated this possibility,particularly with three-dimensional air quality models.We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region,Yangtze River Delta,and Pearl River Delta of China.The WRF-Chem simulations were compared with satellite and ground observations,and previous observation-based model studies.Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH,HO2,and RO2 in the three regions,and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~ 65% decreases (68%-73% increases) of the P(O3) in Beijing,Shanghai,and Guangzhou.For the three cities,the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO,ALD2,and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~ 65%).Our results showed that AVOC emissions in 2006 from Zhang et al.(2009) have been underestimated by ~ 68% in suburban areas and by > 68% in urban areas,implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated,and cloud condensation nuclei could be underestimated,whereas local and regional radiation was overestimated.  相似文献   

8.
This study examines the processes controlling the diurnal variability of ozone (O3) in the marine boundary layer of the Kwajalein Atoll, Republic of the Marshall Islands (latitude 8° 43′ N, longitude 167° 44′ E), during July to September 1999. At the study site, situated in the equatorial Pacific Ocean, O3 mixing ratios remained low, with an overall average of 9–10 parts per billion on a volume basis (ppbv) and a standard deviation of 2.5 ppbv. In the absence of convective storms, daily O3 mixing ratios decreased after sunrise and reached minimum during the afternoon in response to photochemical reactions. The peak-to-peak amplitude of O3 diurnal variation was approximately 1–3 ppbv. During the daytime, O3 photolysis, hydroperoxyl radicals, hydroxyl radicals, and bromine atoms contributed to the destruction of O3, which explained the observed minimum O3 levels observed in the afternoon. The entrainment of O3-richer air from the free troposphere to the local marine boundary layer provided a recovery mechanism of surface O3 mixing ratio with a transport rate of 0.04 to 0.2 ppbv per hour during nighttime. In the presence of convection, downward transport of O3-richer tropospheric air increased surface O3 mixing ratios by 3–12 ppbv. The magnitude of O3 increase due to moist convection was lower than that observed over the continent (as high as 20–30 ppbv). Differences were ascribed to the higher O3 levels in the continental troposphere and weaker convection over the ocean. Present results suggest that moist convection plays a role in surface-level O3 dynamics in the tropical marine boundary layer.  相似文献   

9.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

10.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

11.
12.
Modeling tropospheric ozone formation over East China in springtime   总被引:1,自引:0,他引:1  
In this study, we investigate the springtime O3 formation over East China (April 2008) using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). A simple process analysis scheme is added to WRF/Chem, which could calculate the contributions of photochemical and physical processes to O3 formation. WRF/Chem calculates the hourly 3-D O3 mixing ratios, photochemical O3 production rates (CPR) and physical processes contribution rates (PCR) on a two nested domain system, with inner domain focusing on East China. Model evaluation shows that the modeled results agree relatively well with the observations. On the ground level, the high O3 mixing ratios (>45 ppbv) are located over Fujian and Jiangxi provinces. The O3 levels over the Yangtze River Delta (YRD) and northern Jiangsu are low (<30 ppbv). The distribution patterns of CPR and PCR over East China reveal that the high O3 mixing ratios over Jiangxi and Fujian are caused by both local photochemical generation and regional transport, while the O3 concentrations over the YRD region are transported and diffused from surrounding areas. In addition, the contributions of biogenic and anthropogenic emissions as well as the regional transport from domain’s upstream regions are discussed. On average, the biogenic and anthropogenic emissions account for 2.6 and 4.5 ppbv of daytime mean O3 mixing ratios in East China, respectively.  相似文献   

13.
Chemical amplification, CA, a method commonly used for the detection of peroxy radicals, HO2 and RO2, was found to be sensitive towards ClOx (Cl+ClO+OClO) as well. ClOx is reduced by NO to Cl atoms which react with carbon monoxide in the presence of O2. The reaction sequence thus initiated oxidizes CO to CO2 and NO to NO2, with a chain length of 300 ± 60. This allows the atmospheric ClOx content to be measured under ambient conditions with a detection limit of better than 1 ppt. In parallel peroxy radicals are indicated with a chain length of 160 ± 15. Chemical amplification is not specific and does not indicate which radical chain it is seeing. Identification relies solely on plausibility. During the ARCtic Tropospheric Ozone Chemistry (ARCTOC) campaign in spring 1995 and 1996 the CA technique was used at Ny-Ålesund. ClOx at mixing ratios of up to 2 ppt were found in the boundary layer under certain conditions. The low concentrations of ClOx indicate that the arctic boundary ozone depletion is mainly driven by bromine.  相似文献   

14.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

15.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

16.
Vertical Profile of Night-Time Stratospheric OClO   总被引:1,自引:0,他引:1  
The first night-time observation of the vertical profile of OClO wasperformed by the AMON balloon-borne spectrometer during the SESAME arcticcampaign, launched from Kiruna in northern Scandinavia. The flight, which tookplace inside the polar vortex on February 10, 1995, reveals mixing ratios of45±10 pptv at 20 km. These results are in excellent agreement with theREPROBUS 3D model simulations, which indicate that the observed OClOcorresponds to daytime ClO and BrO mixing ratios of 1.2 ppbv and 10 pptv,respectively.  相似文献   

17.
中国部分清洁地区大气中N2O的浓度   总被引:11,自引:0,他引:11  
1993年4月—1995年8月对中国部分清洁地区大气的N2O浓度进行了现场观测,结果表明:农田(玉米田和麦田)大气的N2O平均浓度高达322.1-343.4ppbv,这是土壤排放N2O的结果;临安、龙风山和瓦里关山大气本底观测站(WMO/GAW)N2O的平均浓度分别为318.8±8.4ppbv,317.4±4.7ppbv和314.0±4.2ppbv。在此基础上,分析了大气N2O的分布及变化特征。另外,还对现场取样及N2O浓度测量技术作了初步分析和评价  相似文献   

18.
Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
  1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
  2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
  3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
  相似文献   

19.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号