首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

2.
Measurements of formaldehyde (HCHO) were made at the Cape Verde Atmospheric Observatory between November 2006 and June 2007 using the Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) technique. Observations show that typical HCHO mixing ratios ranged between 350 and 550 pptv (with typical 2-σ uncertainties of ~110 pptv), with several events of high HCHO, the maximum being 1,885?±?149 pptv. The observations indicate a lack of strong seasonal or diurnal variations, within the uncertainty of the measurements. A box model is employed to test whether the observations can be explained using known hydrocarbon photochemistry; the model replicates well the typical diurnal profile and monthly mean values. The model results indicate that on average 20% of HO2 production and 10% of OH destruction can be attributed to the mean HCHO levels, suggesting that even at these low average mixing ratios HCHO plays an important role in determining the HOx (HO2+OH) balance of the remote marine boundary layer.  相似文献   

3.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

4.
We present a technique for the measurement of dimethyl sulfide (DMS) from airborne and ground-based platforms, using whole air sampling followed by gas chromatography with mass spectrometer and flame ionization detection. DMS measurements that were obtained during the 1999 NASA Pacific Exploratory Mission-Tropics B showed excellent agreement with independent in-flight DMS measurements, over a wide range of concentrations. The intercomparison supports two key results from this study, first that DMS can be accurately quantified based on ethane and propane per-carbon-response-factors (PCRFs), and second that DMS is stable in water-doped electropolished stainless steel canisters for at least several weeks. In addition, our sampling frequency and duration are flexible and allow detail in the vertical structure of DMS to be well captured. Sampling times as fast as 8 s were achieved and these data are suitable for DMS flux calculations using the mixed-layer gradient technique. Correlations between DMS and other marine tracers can also be readily investigated by this whole air sampling technique, because DMS is analyzed together with more than 50 simultaneously sampled hydrocarbons, halocarbons, and alkyl nitrates. The detection limit of the DMS measurements is 1 part per trillion by volume (pptv), and we conservatively estimate the accuracy to be ±20% or 3 pptv, whichever is larger. The measurement precision (1 ) is 2–4% at high mixing ratios (> 25 pptv), and 1 pptv or 15%, whichever is larger, at low mixing ratios (<10 pptv).  相似文献   

5.
Shipboard measurements of atmospheric dimethyl sulfide were made during two transects along the east coast of the United States and at several stations in the Gulf of Maine. Limited measurements of carbon disulfide and hydrogen sulfide are also reported. The mean DMS mixing ratio was 29 pptv (=25, n=84, median 19 pptv) during the Atlantic transects, and 101 pptv (=67, n=77, median 79 pptv) in the Gulf of Maine. Distinct diurnal variations were found in the DMS data from the transects. The meteorology of the study area appears to control day-to-day differences in the magnitude of these diurnal variations, although rapid daytime oxidation is suggested in some cases. Diurnal variations were also evident in near-shore stations in the Gulf of Maine due to nocturnal boundary-layer inversion. Diurnal variation was not evident at other sites in the Gulf due to large scale changes in the atmospheric circulation pattern, which effectively masked any effects due to oxidation processes. Model simulations confirm that the DMS levels and diurnal variation found during the transects are not consistent with atmospheric oxidation processes alone. Atmospheric CS2 and H2S mixing ratios were less than 3 pptv during the transects, except for a single period of higher CS2 mixing ratios (reaching 11 pptv) during advection of continental air. Calculations of the flux of oceanic sulfur to the eastern United States show that the contribution of natural sulfur to the North American sulfur budget is small compared to anthropogenic sources.  相似文献   

6.
A latitudinal profile (30° W, from 30° N to 30° S) of mixing ratios of nitric acid and particulate nitrate was determined on the Atlantic Ocean during the Polarstern cruise ANT VII/1 from Bremerhaven, Germany, to Rio Grande, Brazil. The detection of HNO3 was performed simultaneously by laser-photolysis fragment-fluorescence (LPFF) and by nylon filter packs. The detection limit was about 30 pptv for a signal accumulation time of 1 h for LPFF and about 5 pptv for the filters at a collection time of 4 h. In general, the mixing ratios of HNO3 in the Northern Hemisphere were found to be significantly higher than those in the Southern Hemisphere. The Atlantic background concentrations frequently varied between 80 pptv and the detection limit. Larger deviations from this trend were found for the more northern latitudes and for episodes like crossings of exhaust plumes from ships or from continental pollutions sources.  相似文献   

7.
Atmospheric concentrations of ca. 250 C6–C15 hydrocarb on and C4–C12 oxygenated volatile organic compounds (VOC) including alkanes, benzene and alkyl benzenes, monoterpenes and aldehydes were measured in August 1994 during the POPCORN campaign (POPCORN = Photo-Oxidant formation by Plant emitted Compounds and OH Radicals in North-Eastern Germany). About 80 substances together contributed 90% of the atmospheric carbon in this range of molecular weight. During this field campaign VOC-emissions from several crop and tree species and the ambient concentrations of CO, C2–C7 non-methane hydrocarbons (NMHC), C1 and C2 aldehydes, nitrogen oxides, ozone and hydroxyl-radicals (OH) were also measured. These data were used to interpret the VOC measurements presented here. The on-line GC–MS used for the VOC measurements combines adsorptive sampling with thermal desorption and GC–MS analysis in an automated system. Internal standards were used to quantify the measurements. Ozone was destroyed prior to the sample preconcentration through the gas phase reaction with NO. Aromatic compounds like benzene, toluene and xylenes were the most abundant compound class among the measured substances, -pinene and 3-carene, most probably originating from pineforests ca. 1 km away from the measuring site, were the most abundant monoterpenes. The highest mixing ratios of most compounds were measured in nights with strong inversion situations. The toluene mixing ratios then reached 630 pptv; -pinene mixing ratios went up to 430 pptv. The median of all toluene and -pinene measurements during the campaign was 125 pptv or 22 pptv, respectively. These values are on the lower end of ambient measurements reported for continental sites. In most samples also n-pentanal, n-hexananl, n-nonanal and n-undecanal were present. Median mixing ratios were 9, 16, 14 and 8 pptv, respectively. Emission studies indicate that these highly reactive compounds are most probably emitted from maize. It is shown by a simple first order approach that the potential for ozone formation during the POPCORN campaign was roughly equal for anthropogenic and biogenic VOC. From measured concentrations of ozone, OH-radicals, methane, CO, C2–C15 nonmethane hydrocarbons (NMHC) and C5–C11 aldehydes a photochemical production of ozone in the order of 3.5 ppb/h can be estimated. Apart from formaldehyde and acetaldehyde, which are at least partly products of VOC oxidation, the substance group with the largest contribution to the VOC turnover are the monoterpenes. They contribute ca. 30%. However, the mechanism of terpene oxidation is very complex and presently only partly understood. Thus the actual contribution of monoterpenes to ozone formation is very uncertain. Other measured compound classes such as light alkenes, alkanes, aromatics, and C5–C11 aldehydes contribute each between 10% and 15% to ozone formation. The measuring site was not influenced directly from strong biogenic or anthropogenic sources, and the results obtained during the POPCORN campaign can be regarded as a typical picture of a remote rural central European environment.  相似文献   

8.
Atmospheric hydroxyl (OH), hydroperoxy (HO2), total peroxy (HO2 and organic peroxy radicals, RO2) mixing ratios and OH reactivity (first order OH loss rate) were measured at a rural site in central Pennsylvania during May and June 2002. OH and HO2 mixing ratios were measured with laser induced fluorescence (LIF); HO2 + RO2 mixing ratios were measured with chemical ionization mass spectrometry (CIMS). The daytime maximum mixing ratios were up to 0.6 parts per trillion by volume (pptv) for OH, 30 pptv for HO2, and 45 pptv for HO2 + RO2. A parameterized RACM (Regional Atmospheric Chemistry Mechanism) box model was used to predict steady state OH, HO2 and HO2 + RO2 concentrations by constraining the model to the measured OH reactivity and previously measured volatile organic compound (VOC) distributions. The averaged model calculations are generally in good agreement with the observations. For OH, the model matched the observations for day and night, with an average observed-to-modeled ratio of 0.80. In previous studies such as PROPHET98, nighttime NO was near 0 pptv and observed nighttime OH was significantly larger than modeled OH. In this study, nighttime observed and modeled OH agree to within measurement and model uncertainties because the main source of the nighttime OH was the reaction HO2 + NO → OH + NO2, with the NO being continually emitted from the surrounding fertilized corn field. The observed-to-modeled ratio for HO2 is 1.0 on average, although daytime HO2 is underpredicted by a factor of 1.2 and nighttime HO2 is over-predicted by a factor of ∼2. The average measured and modeled HO2 + RO2 agree well during daytime, but the modeled value is about twice the measured value during nighttime. While measured HO2 + RO2 values agree with modeled values for NO mixing ratios less than a few parts per billion by volume (ppbv), it increases substantially above the expected value for NO greater than a few ppbv. This observation of the higher-than-expected HO2 + RO2 with the CIMS technique confirms the observed increase of HO2 above expected values at higher NO mixing ratios in HO2 measurements with the LIF technique. The maximum instantaneous O3 production rate calculated from HO2 and RO2 reactions with NO was as high as 10–15 ppb h−1 at midday; the total daily O3 production varied from 13 to 113 ppbv d−1 and was 48 ppbv d−1 on average during this campaign.  相似文献   

9.
Measurements of biogenic gases including enantiomeric monoterpenes and isoprene, and anthropogenic gases such as benzene, toluene, ethylbenzene, ortho-, meta- and para- xylene (BTEX) compounds were made by GC-MS in November and December 2008 within a stone pine (Pinus pinea L) forest located on the Southwest coast of Spain (37.10°N, 6.70°W). Mixing ratios of the biogenic species were found to be low (mean circa 10 pptv) consistent with previously observed low wintertime regional forest emission rates. In contrast, anthropogenic species were significantly higher (mean 10–156 pptv), the dominant emissions originating from the city of Huelva and associated petrochemical activities, located 25 km north west of the measurement site. In wintertime the monoterpene (?)-α-pinene was found to be in slight enantiomeric excess over (+)-α-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (?)-α-pinene. This indicates a strong seasonal variance in the enantiomeric emission ratio which is not manifested in the day/night temperature cycles in wintertime. Mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the beta-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed.  相似文献   

10.
Ambient mixing ratios of NO, NO2, and O3 were determined together with the photolysis frequency of NO2, JNO2, at a rural, agricultural site in Germany. The data were collected during the POPCORN-campaign from August 1 to August 24, 1994, in a maize field 6 m above ground. The medians of the NO, NO2, and O3 mixing ratios between 10:00 and 14:00 UT were 0.25, 1.09, and 45 ppbv, respectively. The corresponding median of JNO2 was 6.0 · 10–3 s–1. NOx = NO + NO2 showed a strong diurnal variation with maximum mixing ratios at night, suggestive of a strong local surface source of NO, probably by microbial activity in the soil. The estimated average emission rate was 40 ng(N) m–2 s–1 of NOx, the major part of it probably in the form of NO. The available measurements allowed the estimation of the local NOx budget. At night the budget is almost closed and the measured NOx mixing ratios can be explained by the local source, local dry deposition of NO2, formation of NO3 and N2O5, and vertical exchange of air across the nocturnal inversion. During day-time, the local surface source of NO is not sufficient to explain the measured mixing ratios, and horizontal advection of NOx to the site must be included. The NO2/NO ratio during the morning und late afternoon is lower than predicted from the photostationary state owing to the local NO surface source, but is regulary higher during the hours around noon. For noon, August 10, 1994, the NO2/NO ratio was used to derive the momentary lower limit for the concentration of the peroxy-radicals of 2.2 · 109 cm–3 (86 pptv).  相似文献   

11.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

12.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

13.
A study of the gas phase mixing ratio of hydrochloric acid was made during the 1988 Polarstern expedition using tunable diode laser absorption spectroscopy (TDLAS). The measurements were made 22 m above sea level at 28° N, 30° W. The signal-to-noise ratio was unity for <50 pptv HCl, but because of wall effects in the sampling system, only an upper limit for the HCl mixing ratio of <250 pptv can be stated.  相似文献   

14.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

15.
Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
  1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
  2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
  3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
  相似文献   

16.
Simultaneous observations of several chlorine source gases, as well asHCl and ClO, have been performed in the Arctic stratosphere on 1 and 9February 1994, using balloon-borne instrumentation as a contribution toSESAME (Second European Stratospheric Arctic and Mid latitude Experiment).The observed mixing ratios of HCl and N2O show a clearanticorrelation. No severe loss of HCl was observed inside the vortex duringour measurement. These measurements showed that during this period at 20 kmand above, HCl was either in excess, or at least as abundant, asClONO2 and comprised between 50 and 70% of theavailable chlorine, Cly. On 1 February, measurements were madeinside the polar vortex. The air mass sampled on this day showed a clearsignature of diabatic descent, and also enhanced levels of ClO with amaximum of 230 pptv at 22.5 km. A 10 day backward trajectory analysis showedthat these air masses had passed a large region of low temperatures a fewhours prior to the measurement. Temperatures along the back trajectory atthe 475 K and 550 K levels (20.1 and 23.7 km respectively) were cold enoughfor heterogeneous chlorine activation to occur, in agreement with theobserved elevated ClO mixing ratios.  相似文献   

17.
In 1978–1980 nine aircraft flights to an altitude of up to 15 km were made over western Europe. Sulfur dioxide was measured with a sensitive chemiluminescence method consisting of separate sampling and analysis stages and application of a wet chemical filter procedure (detection limit: 8 pptv SO2).The measurements performed in the upper troposphere and lower stratosphere lead to some unexpected results: (a) the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio; (b) between the 500 mb and the actual tropopause level the SO2 mixing ratio is found to be <100 pptv, and weak vertical gradients of SO2 suggest only a small flux of tropospheric SO2 into the stratosphere; (c) increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric source of SO2.In the light of improved one-dimensional models considering the vertical distribution of stratospheric sulfur compounds (Crutzen, 1981; Turco et al. 1981) it can be shown that the oxidation of organic sulfur compounds (e.g., OCS, CS2) seems to be a stratospheric source of SO2. Furthermore, the flux calculations based on the SO2 mixing ratios measured at the tropopause level indicate that the contribution of tropospheric (man-made) SO2 to the stratospheric aerosol layer is of only minor importance.  相似文献   

18.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

19.
Springtime measurements of NOx, ozone, PAN,J(NO2), and other compounds were made near Ny-Ålesund,Svalbard (78°54N, 11°53E), in 1994 and Poker Flat,Alaska (65°08N, 147°29W), in 1995. At Svalbard medianmixing ratios for PAN and NOx of 237 and 23.7 pptv,respectively, were observed. The median mixing ratios at Poker Flat for PANand NOx were 79.5 and 85.9 pptv, respectively. These data areused to estimate thermal PAN decomposition using several differentapproaches. At Svalbard PAN decomposition was very small, while at PokerFlat up to 30 pptv/h PAN decomposed. At both sites the NOx/PANratio increased with temperature between –10 and 20°C implyingthat PAN decomposition is an important NOx source. In-situozone production was calculated from the measured NO, NO2,O3, J(NO2), and temperature data, using thesteady state assumption Median ozone production was 605 pptv/h at PokerFlat, and one order of magnitude smaller at Svalbard during the daytime.Only at Poker Flat could a direct influence on the diurnal ozone cycle beobserved from in-situ production. These results imply that PAN decompositionis a major source of NOx in the high latitude troposphere, andthat this contributes to the observed spring maximum in surface ozone.  相似文献   

20.
A one-month experiment was performed at Amsterdam Island in January 1998, to investigate the factors controlling the short-term variations of atmospheric dimethylsulfide (DMS) and its oxidation products in the mid-latitudes remote marine atmosphere. High mixing ratios of DMS, sulfur dioxide (SO2) and dimethylsulfoxide (DMSO) have been observed during this experiment, with mean concentrations of 395 parts per trillion by volume (pptv) (standard deviation, = 285, n = 500), 114 pptv ( = 125, n = 12) and 3 pptv ( = 1.2, n = 167), respectively. Wind speed and direction were identified as the major factors controlling atmospheric DMS levels. Changes in air temperature/air masses origin were found to strongly influence the dimethylsulfoxide (DMSO)/DMS and SO2/DMS molar ratios, in line with recent laboratory data. Methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2–) mean concentrations in aerosols during this experiment were 12.2± 6.5 pptv (1, n=47) and 59 ± 33 pptv (1, n=47), respectively. Evidence of vertical entrainment was reported following frontal passages, with injection of moisture-poor, ozone-rich air. High MSA/ nss-SO4 2– molar ratios (mean 0.44) were calculated during these events. Finally following frontal passages, few spots in condensation nuclei (CN) concentration were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号