首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To quantify spatiotemporal variation in hydraulic properties of bank gully concentrated flow, a series of scour experiments were run under water discharge rates ranging from 30 to 120 l min?1. Concentrated flows were found to be turbulent and supercritical in the upstream catchment area and downstream gully beds. As discharge increased, values of the soil erosion rate, Reynolds number (Re), shear stress, stream power, and flow energy consumption (ΔE) increased while values of the Froude number (Fr) and the Darcy–Weisbach friction factor (resistance f ) did not. With the exception of gully headcut collapse under discharge rates of 60, 90, and 120 l min?1, a declining power function trend (P < 0.05) in the soil erosion rate developed in the upstream catchment area, headcuts, and downstream gully beds. However, increasing trends were observed in temporal variations of hydraulic properties for downstream gully beds and the upstream catchment area. Despite significant differences in temporal variation between the soil erosion rate and hydraulic property values, relative steady state conditions of the soil erosion rate and ΔE were attained following an initial period of adjustment in the upstream catchment area, headcuts, and downstream gully beds under different discharge rates. A logarithmic growth of flow energy consumption per unit soil loss (ΔEu) was observed in bank gullies and the upstream catchment area as the experiment progressed, further illustrating the actual reason behind the discrepancy in temporal variation between soil erosion rates and ΔE. Results demonstrate that ΔE can be used to estimate headcut erosion soil loss, but further quantitative studies are required to quantify coupling effects between hydraulic properties and vertical variation in soil mechanical properties on temporal variation for bank gully soil erosion rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

3.
Headcut, known as knickpoint migration too, is developed due to sudden change in channel bed followed by bed scour and erosion which progressing upstream. The results are the downstream morphological change and transporting massive sediment to the downstream reservoir. Most of the past studies focus on non-cohesive soils, although many problems occur because of cohesive soils. In this study, 10 different samples of cohesive soils in long term consolidation with different composition of silt and clay were tested under different circumstances of waterfall height and flow velocity to investigate the neck migration rate and the sediment yield. Tests were continued to reach a constant migration rate. One of the effective phenomena in all tests was tensional cracks on soil surface. The size and number of these cracks have inverse relation with percent of clay. Because of these cracks, massive erosion occurs at the beginning of all tests. By reducing percent of clay, headcut, waterfall height and sediment yield were increased and by reducing waterfall height and flow velocity these parameters were reduced. In lower percent of clay, headcut erosion will occur quickly with more slants. Caving phenomenon was not observed in any tests and massive erosion rate was more quickly.  相似文献   

4.
PROCESSES OF HEADCUT GROWTH AND MIGRATION IN RILLS AND GULLIES   总被引:1,自引:0,他引:1  
lINTRoDUCTIONHeadcuterosionwithinrills,ephemeralguIlies,classicgullies,andstreamscausesseriousenvironmentalproblems.Headcuterosionacceleratesthelossoftopsoilanddecreasestheproductivityofagriculturallands.Erodedsedimentsoftenendupinreceivingstreams,causingwaterqualityproblemsandnegativelyimpactingbioIogicalprocesses.Inadditiontolandscapedegradation,gulliesarethedominantformofdamagetoearthspillways.lfagullycanmovethroughanearthspillwayandbreachthecrestofadam,thentheimpoundedfloodwaterswiI1…  相似文献   

5.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   

6.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

7.
NUMERICAL SIMULATION OF HEAD-CUT WITH A TWO-LAYERED BED   总被引:1,自引:0,他引:1  
1INTRODUCTION The rate of gully erosion is dominated by the upstream migration of existing nick-points called headcut.Due to the shape of the headcut,the flow from the upstream channel impinges into the pool of the scour hole and forms a complex three-dimensional flow structure.The turbulent flow deepens the scour hole,transports the eroded material downstream,undercuts the headcut wall and creates gravitational slumping of the gully head material.In reality,the occurrence of a head cut i…  相似文献   

8.
1INTRODUCTION A headcut is a vertical or near-vertical drop or discontinuity on the channel bed of a stream,rill or gully,at which a free overfall flow often occurs,as shown in Fig.1.A headcut is usually eroded by the action of hydraulic stress,basal sapping,weathering,or the combination of these processes.Headcut erosion can accelerate soil loss,increase sediment yields in streams,damage earthen spillways,and disturb bank stability.Therefore,the prediction of headcut migration is a very …  相似文献   

9.
We present observations and analysis of gully headcut erosion, which differ from previous headcut studies in both spatial and temporal detail. Using ten terrestrial laser scanning (TLS) surveys conducted over a period of 3 years, we mapped headcut erosion with centimeter‐scale detail on a sub‐annual basis. Erosional change is observed through point cloud differencing, which expands on previous studies of headcut retreat rate by revealing the evolution of the headcut morphology. Headcut retreat observations are combined with hydrological measurements to explore the controlling factors of erosional retreat. We find that (i) mass failure due to wetting, (ii) saturation weakening of shale bedrock in plunge pools, and (iii) direct wash over the headcut face all appear to contribute to headcut retreat; however, mass failure via wetting appears to be the dominant process. Soil moisture was monitored near the study headcut at 0.4 m depth, and time‐lapse photos show that soil wetting tends to be concentrated along the headcut apex after rainfall and snowmelt runoff events. We find that moisture concentration at the headcut apex leads to more rapid erosion at that location than along the headcut sidewalls, resulting in a semi‐ellipsoidal plan view morphology that is maintained as the headcut migrates up‐valley. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Gully erosion is a major environmental problem, posing significant threats to sustainable development. However, insights on techniques to prevent and control gullying are scattered and incomplete, especially regarding failure rates and effectiveness. This review aims to address these issues and contribute to more successful gully prevention and control strategies by synthesizing the data from earlier studies. Preventing gully formation can be done through land use change, applying soil and water conservation techniques or by targeted measures in concentrated flow zones. The latter include measures that increase topsoil resistance and vegetation barriers. Vegetation barriers made of plant residues have the advantage of being immediately effective in protecting against erosion, but have a short life expectancy as compared to barriers made of living vegetation. Once deeply incised, the development of gullies may be controlled by diverting runoff away from the channel, but this comes at the risk of relocating the problem. Additional measures such as headcut filling, channel reshaping and headcut armouring can also be applied. To control gully channels, multiple studies report on the use of check dams and/or vegetation. Reasons for failures of these techniques depend on runoff and sediment characteristics and cross-sectional stability and micro-environment of the gully. In turn, these are controlled by external forcing factors that can be grouped into (i) geomorphology and topography, (ii) climate and (iii) the bio-physical environment. The impact of gully prevention and control techniques is addressed, especially regarding their effect on headcut retreat and network development, the trapping of sediment by check dams and reduction of catchment sediment yield. Overall, vegetation establishment in gully channels and catchments plays a key role in gully prevention and control. Once stabilized, gullies may turn into rehabilitated sites of lush vegetation or cropland, making the return on investment to prevent and control gullies high. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Application of a simple headcut advance model for gullies   总被引:1,自引:0,他引:1       下载免费PDF全文
Gully erosion begins in streambanks and uplands as a consequence of adjustments in driving forces on the landscape imposed by changes in land use or climate. The deleterious effects of gullies worldwide have led to many site‐specific studies of gully form and function. In the continental United States, gully erosion in agricultural land has destroyed valuable farmland yet, prediction of gully processes remains problematic on a national scale. This research has proposed a simple method to predict gully headcut advance. When combined with SWAT hydrologic flow routines, the model predicted gully headcut advance with reasonable accuracy on a daily time step for time periods exceeding two decades. The model was tested in two distinct land resource areas of the United States with differing climate, soils, cover and drainage. The inputs for the headcut model have been kept simple as the model will be applied over large areas. Model inputs consist of headcut height, headcut resistance (based on soil erodibility and a root‐cover factor), and daily flow. The model is compared with an annual time step model used in assessment of headcut advance and appears to offer a better way to assess gully headcut advance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.  相似文献   

14.
Traditionally gully erosion has been identified with the dissection of the landscape in agricultural settings but it is also recognized as a prevalent erosion feature in earthen dam auxiliary spillways and embankments. Flows through earthen spillways and over dam embankments, due to large rainfall events, have the potential to erode and breach the dam or spillway and result in catastrophic releases from the reservoir. The gully erosion process in an earthen spillway or on an embankment can be characterized by stages of initiation, development, and migration of a headcut. A headcut is defmed as a near vertical drop at the upstream end of a gully. The rate of headcut migration is important in determining the breach potential of an earthen spillway and dam embankment. A research program is being conducted to examine the gully erosion processes of earthen dam auxiliary spillways and embankments. This paper describes: l ) the unique test facilities constructed to examine the dominant factors affecting the erosion of earthen spillways and embankments; 2) the observations of the erosion processes and results to date; and 3) the predictive relationships that have been developed for dam gully erosion research at the ARS Hydraulic Engineering Research Unit laboratory in Stillwater, OK.  相似文献   

15.
This study investigates how medium‐term gully‐development data differ from short‐term data, and which factors influence their spatial and temporal variability at nine selected actively retreating bank gullies situated in four Spanish basin landscapes. Small‐format aerial photographs using unmanned, remote‐controlled platforms were taken at the gully sites in short‐term intervals of one to two years over medium‐term periods of seven to 13 years and gully change during each period was determined using stereophotogrammetry and a geographic information system. Results show a high variability of annual gully retreat rates both between gullies and between observation periods. The mean linear headcut retreat rates range between 0·02 and 0·26 m a–1. Gully area loss was between 0·8 and 22 m² a–1 and gully volume loss between 0·5 to 100 m³ a–1, of which sidewall erosion may play a considerable part. A non‐linear relationship between catchment area and medium‐term gully headcut volume change was found for these gullies. The short‐term changes observed at the individual gullies show very high variability: on average, the maximum headcut volume change observed in 7–13 years was 14·3 times larger than the minimum change. Dependency on precipitation varies but is clearly higher for headcuts than sidewalls, especially in smaller and less disturbed catchments. The varying influences of land use and human activities with their positive or negative effects on runoff production and connectivity play a dominant role in these study areas, both for short‐term variability and medium‐term difference in gully development. The study proves the value of capturing spatially continuous, high‐resolution three‐dimensional data using small‐format aerial photography for detailed gully monitoring. Results confirm that short‐term data are not representative of longer‐term gully development and demonstrate the necessity for medium‐ to long‐term monitoring. However, short‐term data are still required to understand the processes – particularly human activity at varying time scales – causing fluctuations in gully erosion rates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
An analytic investigation of the effect of surface seal mechanical properties, overland flow, and subsurface hydrology was performed on headcut development. Headcut growth rates on upland areas have been observed to be quite small (less than 0.00015 meter per second) and that they occur in increments in which chips break off at points where cracks have developed in surface seals. The substrate soil under the seal collapses and is removed by the flow. This mode of headcut development is the result of a strong interaction between the surface and the subsurface processes. The surface process is energetically controlled by the mechanical features of the seal whereas the subsurface process is hydrologically controlled. The analysis yields estimates of the temporal scale of headcut velocities. In cases of infiltration from the vertical gully wall into the substrate, the flexural wave velocity (seismic sound velocity) was found to inversely affect headcut velocity.  相似文献   

17.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
ROCESSES OF EPHEMERAL GULLY EROSION   总被引:2,自引:0,他引:2  
IINTRoDUCTIONEphemeralgulliesaresmallerosionalchannelsonagriculturalIandscapescausedbytheconcentrationofoverlandflowtypicallybetweentwoopposingslopes(ahollow),oftenformedduringasingIerainfaIlevent.Sincethescouredsoilvolumeisnotverylargewithinthesegullies,farmerscaneasilyrefillthem.Ingeneral,ephemeralgulliescanreappearatornearthesamelocationonayearlybasisbecausethesurfacetopograPhyofthefielddoesnotchangeappreciably.Mostephemeralgulliesoccuroncultivatedfieldswithhighlyerodiblesoils,withlit…  相似文献   

20.
Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoon–erosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion‐control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systemat‐ically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first‐order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion. Topographic data from intensive field surveys and detailed photogrammetry provide slope–contributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10‐cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false‐positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号