首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence sediment transport, including the spatio‐temporal trends and patterns of sedimentation in beaver ponds. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences, which appeared in 2004. Volumes of sediment deposited behind the dams were measured, and grain‐size distribution patterns were determined. Flow discharges and sediment fluxes were measured at the inflow and outflow of each dam sequence. Between 2004 and 2011, 1710.1 m3 of sediment was deposited behind the beaver dams, with an average sediment thickness of 25.1 cm. The thickness of the sediment layer was significantly (p < 0.001) related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably because of dam failures subsequent to surges. Differences in sediment flux between the inflow and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The 7‐year‐old sequences have filtered 190.19 ton of sediment out of the Chevral river, which is of the same order of magnitude as the 374.4 ton measured in pond deposits, with the difference between the values corresponding to beaver excavations (60.24 ton), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and Castor canadensis activity are similar in magnitude. The detailed analysis of sedimentation in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration, and catchment management. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Many beaver ponds in the Rocky Mountains, that have been described in the literature, are in‐channel ponds that are relatively small and short‐lived. This paper describes floodplain beaver ponds on low‐gradient deltas in glacial finger lakes in Glacier National Park, Montana. These ponds are distinctly larger, probably fed by hyporheic flow, and stable and long‐lived. Ponds examined were, with one exception, 44 years old. Glacial discharge is present in each valley where beaver ponds occupy low‐gradient deltas, and this discharge likely sustains pond water level over the course of the summer. As glaciers recede and disappear, deltaic beaver ponds dependent on hyporheic flow may be negatively affected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical model (sediment trap efficiency for small ponds—STEP) is developed to simulate sediment deposition in small ponds (i.e. <1 ha) and to calculate the sediment trap efficiency (STE). The algorithms are kept simple to allow the model to simulate larger time periods (i.e. several years). Eight runs with an experimental pond were executed to test the model. The STEP model produces reasonable predictions of STE as well as the shape and magnitude of the effluent sediment concentration graph. The model efficiency of STEP for the prediction of STE equals 0·38 and the root mean square error equals 4·7%. Similar models, such as DEPOSITS and CSTRS, were inefficient in predicting the experimental results. The STEP model was used to simulate the long‐term (33 years) STE of small retention ponds in central Belgium using 10‐min rainfall data. For a typical pond (1000 m2) with a catchment area of 25 ha, annual STE can vary from 58 to 100%, with a long‐term STE of only 68%. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of in‐stream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates with wood load; the residual volume of pools created in association with wood correlates inversely with drainage area; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but the analyses suggest that sediment volume correlates positively with drainage area and wood volume. The form of sediment storage in relation to wood appears to change downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Pool volume correlates positively with wood volume and negatively with channel gradient. Sediment volume correlates well with beaver pond area. More abundant in‐stream wood and beaver populations present historically equated to greater sediment storage within river corridors and greater residual pool volume. One implication of these changes is that protecting and re‐introducing wood and beavers can be used to restore rivers. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
To understand the effect of woody plant encroachment on hydrological processes of mesic grasslands, we quantified infiltration capacity in situ, the temporal changes in soil water storage, and streamflow of a grassland catchment and a catchment heavily encroached by juniper (Juniperus virginiana, eastern redcedar) in previously cultivated, non‐karst substrate grasslands in north‐central Oklahoma for 3 years. The initial and steady‐state infiltration rates under the juniper canopy were nearly triple to that of the grassland catchment and were intermediate in the intercanopy spaces within the encroached catchment. Soil water content and soil water storage on the encroached catchment were generally lower than on the grassland catchment, especially when preceding the seasons of peak rainfall in spring and fall. Frequency and magnitude of streamflow events were reduced in the encroached catchment. Annual runoff coefficients for the encroached catchment averaged 2.1%, in contrast to 10.6% for the grassland catchment. Annual streamflow duration ranged from 80 to 250 h for the encroached catchment compared with 600 to 800 h for the grassland catchment. Our results showed that the encroachment of juniper into previously cultivated mesic grasslands fundamentally alters catchment hydrological function. Rapid transformation of mesic grassland to a woodland state with juniper encroachment, if not confined, has the potential to drastically reduce soil water, streamflow and flow duration of ephemeral streams in the Southern Great Plains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较   总被引:2,自引:0,他引:2  
从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果.  相似文献   

11.
Surface waters associated with peatlands, supersaturated with CO2 and CH4 with respect to the atmosphere, act as important pathways linking a large and potentially unstable global repository of C to the atmosphere. Understanding the drivers and mechanisms which control C release from peatland systems to the atmosphere will contribute to better management and modelling of terrestrial C pools. We used non‐dispersive infra‐red (NDIR) CO2 sensors to continuously measure gas concentrations in a beaver pond at Mer Bleue peatland (Canada); measurements were made between July and August 2007. Concentrations of CO2 in the surface water (10 cm) reached 13 mg C l?1 (epCO2 72), and 26 mg C l?1 (epCO2 133) at depth (60 cm). The study also showed large diurnal fluctuations in dissolved CO2 which ranged in amplitude from ~1·6 mg C l?1 at 10 cm to ~0·2 mg C l?1 at 60 cm depth. CH4 concentration and supersaturation (epCH4) measured using headspace analysis averaged 1·47 mg C l?1 and 3252, respectively; diurnal cycling was also evident in CH4 concentrations. Mean estimated evasion rates of CO2 and CH4 over the summer period were 44·92 ± 7·86 and 0·44 ± 0·25 µg C m?2s?1, respectively. Open water at Mer Bleue is a significant summer hotspot for greenhouse gas emissions within the catchment. Our results suggest that CO2 concentrations during the summer in beaver ponds at Mer Bleue are strongly influenced by biological processes within the water column involving aquatic plants and algae (in situ photosynthesis and respiration). In terms of carbon cycling, soil‐stream connectivity at this time of year is therefore relatively weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Sediment samples were collected from three seawater aquaculture ponds, and soil characteristics, sediment oxygen consumption (SOC), dissolved organic carbon (DOC) and nutrient fluxes were measured using chamber incubations at laboratory. The three ponds were each representing a specific monoculture or polyculture model of sea cucumber. Total organic carbon (TOC) and total nitrogen (TN) contents in the dry sediment ranged from 0.14 to 0.26% and 0.022 to 0.037%, respectively. Total phosphorus (TP) contents in the sediment were more spatially and temporally variable. SOC ranged from 15.29 to 45.86 mmol m–2 d–1 and showed significant differences among the three ponds (p < 0.05). TOC, total carbon (TC) contents, and SOC of the sediment in the pond polycultured with jellyfish increased with culture time, indicating that jellyfish farming enhanced the accumulation of organic matter in the sediments to some extent. Sediment showed net nitrate and ammonium uptake in most ponds and months, and significant differences were found among months (p < 0.05). Dissolved inorganic phosphate (DIP) was released from the sediments in all ponds with low flux rates. DOC was released from the sediment in all ponds and ranged from 0.67 to 1.74 g DOC m–2 d–1. The results suggested that non‐artificial‐feeding sea cucumber culture ponds could not only yield valuable seafood products, but also effectively remove nutrients from the aquaculture systems and consequently alleviate nutrient loadings of the nearby coast.  相似文献   

13.
Carbon dioxide fluxes and water balance were examined in 43 tundra ponds in the northern portion of the Hudson Bay Lowland near Churchill, Manitoba. Most of the ponds were hydrologically disconnected from their catchments during dry periods throughout the post‐melt season. However, episodic reconnection occurred following large precipitation events where depression storage was exceeded. Significant shifts in pond chemistry were observed following precipitation events, with the degree of CO2 saturation increasing during these periods. Pond CO2 concentrations rapidly fell to pre‐event levels following events, suggesting that hydrological connectivity can affect the magnitude and direction of CO2 gas fluxes in tundra ponds. Atmospheric CO2 invaded ponds with highly organic sediments for most of the summer, suggesting that terrestrially derived inorganic carbon was insufficient to meet the demands of algal net production. In contrast, ponds with highly mineral sediments continued to evade CO2 during the summer. In a subset of 11 ponds, long‐term rates of carbon accumulation in sediment ranged from 0·6 to 2·2 mol C m?2 year?1. Very strong correlations existed between average sediment accumulation rates and pond perimeters and basin areas suggesting that peat may be a major source of sediment carbon. Aeolian transport is also a potentially large source of sediment carbon. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Agricultural land use in the area of water bodies is generally considered to increase the nutrient status of the water body water and sediments, but is this also the case for already nutrient-rich fish ponds? We studied 83 fish ponds in the Dombes region, France, where 1100 ponds are located in a heterogeneous agricultural landscape. Different water and sediment parameters were analysed for ponds and in ditches after rainfall events. Land use was studied in the primary catchment of ponds and in a 100-m zone around ponds. Soil parameters of different land-use types were analysed and farmers interviewed about agricultural practices. Increasing cropping area in the catchment of the ponds is significantly correlated to higher PO4 3- concentration of pond water and to a lower degree, also to NO3 ?, but only in certain years with higher rainfall and with a more uneven distribution in spring. Sediment parameters were not significantly influenced. High NO3- concentration in the water of a ditch during significant rainfall events was found for a cropland dominated catchment.

Citation Wezel, A., Arthaud, F., Dufloux, C., Renoud, F., Vallod, D., Robin, J., and Sarrazin, B., 2013. Varied impact of land use on water and sediment parameters in fish ponds of the Dombes agro-ecosystem, France. Hydrological Sciences Journal, 58 (4), 854–871.  相似文献   

15.
Influence of the rainfall regime on erosion and transfer of suspended sediment in a 905‐km² mountainous catchment of the southern French Alps was investigated by combining sediment monitoring, rainfall data, and sediment fingerprinting (based on geochemistry and radionuclide concentrations). Suspended sediment yields were monitored between October 2007 and December 2009 in four subcatchments (22–713 km²). Automatic sediment sampling was triggered during floods to trace the sediment origin in the catchment. Sediment exports at the river catchment outlet (330 ± 100 t km‐2 yr‐1) were mainly driven (80%) by widespread rainfall events (long duration, low intensities). In contrast, heavy, local and short duration storms, generated high peak discharges and suspended sediment concentrations in small upstream torrents. However, these upstream floods had generally not the capacity to transfer the sediment down to the catchment outlet and the bulk of this fine sediment deposited along downstream sections of the river. This study also confirmed the important contribution of black marls (up to 70%) to sediment transported in rivers, although this substrate only occupies c. 10% of the total catchment surface. Sediment exports generated by local convective storms varied significantly at both intra‐ and inter‐flood scales, because of spatial heterogeneity of rainfall. However, black marls/marly limestones contribution remained systematically high. In contrast, widespread flood events that generate the bulk of annual sediment supply at the outlet were characterized by a more stable lithologic composition and by a larger contribution of limestones/marls, Quaternary deposits and conglomerates, which corroborates the results of a previous sediment fingerprinting study conducted on riverbed sediment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Two centuries of human activities in the Greater Yellowstone Ecosystem (GYE) have strongly influenced beaver activity on small streams, raising questions about the suitability of the historical (Euro‐American) period for establishing stream reference conditions. We used beaver‐pond deposits as proxy records of beaver occupation to compare historical beaver activity to that throughout the Holocene. Forty‐nine carbon‐14 (14C) ages on beaver‐pond deposits from Grand Teton National Park indicate that beaver activity was episodic, where multi‐century periods lacking dated beaver‐pond deposits have similar timing to those previously documented in Yellowstone National Park. These gaps in the sequence of dated deposits coincide with episodes of severe, prolonged drought, e.g. within the Medieval Climatic Anomaly 1000–600 cal yr bp , when small streams likely became ephemeral. In contrast, many beaver‐pond deposits date to 500–100 cal yr bp , corresponding to the colder, effectively wetter Little Ice Age. Abundant historical beaver activity in the early 1900s is coincident with a climate cooler and wetter than present and more abundant willow and aspen, but also regulation of beaver trapping and the removal of wolves (the beaver's main predator), all favorable for expanded beaver populations. Reduced beaver populations after the 1920s, particularly in the northern Yellowstone winter range, are in part a response to elk overbrowsing of willow and aspen that later stemmed from wolf extirpation. Beaver populations on small streams were also impacted by low streamflows during severe droughts in the 1930s and late 1980s to present. Thus, both abundant beaver in the 1920s and reduced beaver activity at present reflect the combined influence of management practices and climate, and underscore the limitations of the early historical period for defining reference conditions. The Holocene record of beaver activity prior to Euro‐American activities provides a better indication of the natural range of variability in beaver‐influenced small stream systems of the GYE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The ponds are natural water resources used for drinking, bathing, washing and aqua culture. In this work, the contamination of ponds lied in central India with F and heavy metals (As, Sb, Cr, Mn, Fe, Cu, Zn, Cd, Pb, Th and U) is described. The F concentration in the pond water and sediment (n = 24) was ranged from 1.6–5.5 mg/L and 210–1430 mg/kg with mean value of 2.3 ± 0.4 mg/L and 599 ± 137 mg/kg, respectively. The concentration variation and sources of the elements in the pond water and sediment are discussed. The health hazards of F in the domestic animals are described.  相似文献   

18.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Diffuse sediment pollution impairs water quality, exerts a key control on the transfer and fate of nutrients and contaminants and causes deleterious impacts on freshwater ecology. A variety of catchment sediment sources can contribute to such problems. Sediment control strategies and effective targeting of mitigation options therefore require robust quantitative information on the key sources of the sediment problem at catchment scale. Recent observations by Catchment Sensitive Farming Officers (CSFO's) in England have highlighted road verges damaged and eroded by passing vehicles, particularly large farm machinery, and livestock herd movement as visually important potential sources of local sediment problems. A study was therefore undertaken to assess the relative importance of damaged road verges as a suspended sediment source in three sub‐catchments of the Hampshire Avon drainage basin, southern UK. Road verge sediment contributions were apportioned in conjunction with those from agricultural topsoils and channel banks/subsurface sources. Time‐integrating isokinetic samplers were deployed to sample suspended sediment fluxes at the outlets of two control sub‐catchments drained by the Rivers Chitterne and Till selected to characterize areas with a low road network density and limited visual evidence of verge damage, as well as the River Sem sub‐catchment used to represent areas where road verge damage is more prevalent. The findings of a sediment source fingerprinting investigation based on a combination of intermittent sampling campaigns spanning the period 22/5/02–27/4/08 suggested that the respective overall mean relative sediment contributions from damaged road verges were 5 ± 3%, 4 ± 2% and 20 ± 2%. Relative inputs from damaged road verges for any specific sampling period in the River Sem sub‐catchment were as high as 33 ± 2%. Reconstruction of historical sources in the same sub‐catchment, based on the geochemical record stored in a floodplain depth profile, suggested that the significance of damaged road verges as a sediment source has increased over the past 15–20 years. The findings provide important information on damaged road verges as a primary source of suspended sediment and imply that catchment sediment control strategies and mitigation plans should consider such verges in addition to those agricultural and channel sources traditionally taken into account when attempting to reduce sediment pressures on aquatic resources. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The utility of sediment budget analysis is explored in revealing spatio‐temporal changes in the sediment dynamics and morphological responses of a fluvial system subject to significant human impacts during the recent Anthropocene. Sediment budgets require a data‐intensive approach to represent spatially‐differentiated impacts adequately and are subject to numerous estimation uncertainties. Here, field and topographic surveys, historical data, numerical modelling and a representative‐area extrapolation method are integrated to construct a distributed, process‐based sediment budget that addresses historical legacy factors for the highly regulated Lagunitas Creek (213 km2), California, USA, for the period 1983–2008. Independent corroboration methods and error propagation analysis produce an uncertainty assessment unique to a catchment of this size. Current sediment yields of ~20 000 t a‐1 ± 6000 t a‐1 equate to unit rates of ~300 t km‐2 a‐1 ± 90 t km‐2 a‐1 over the effective sediment contributing area of 64 km2. This is comparable with yields associated with early Euro‐American settlement in the catchment, despite loss of sediment supply upstream of the two large dams. It occurs because ~57% of the sediment is now derived from incision‐related channel erosion. Further, the highly efficient routing of channel‐derived sediments in these incised channels suggests an efflux of 84% of contemporary sediment production, contrasting with the efflux of ≈10–30% reported for unregulated agricultural catchments. The results highlight that sediment budgets for regulated rivers must accommodate channel morphological responses to avoid significantly misrepresenting catchment yields, and that volumetric precision in sediment budgets may best be improved by repeat, spatially dense, channel cross‐section surveys. Human activities have impacted every aspect of the sediment dynamics of Lagunitas Creek (production, storage, transfer, rates of movement through storage), confirming that, while distributed sediment budgets are data demanding and subject to numerous error sources, the approach can provide valuable insights into Anthropocene fluvial geomorphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号