首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Planimetric change was measured on daily hydrographs over two meltwater seasons using time-lapse images of the proglacial, gravel, braided, Sunwapta River, Canada. Significant planimetric change occurred on 10–15 days per year. Area of planimetric change correlated with peak and total daily meltwater hydrograph discharge. A clear threshold discharge can be identified below which no planform activity occurs, an intermediate range over which change occurs conditionally, and a peak flow range at which significant change always occurs. Field conditions were reproduced in a physical model in a laboratory flume. Photogrammetric DEMs of bed morphology and measurements of bedload output were made for each hydrograph experimental run. The physical model results for planimetric change had a threshold discharge for change, and trend with discharge, similar to the field data. The model data also show that planimetric change correlates strongly with volumes of erosion/deposition measured from successive DEMs, and with bedload transport rate. The relation between planimetric change and topographic change is also apparent from previous cross-section surveys at the field site. The results highlight the planimetric dynamics of braiding rivers in relation to discharge forcing, and the relationship between planimetric change, morphological change, and bedload transport in braided rivers. This also points to the potential use of measurements of planimetric change from time-lapse imagery as a low-cost method for high-frequency monitoring for braiding dynamics and also a surrogate for bedload transport measurement. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Bedload and river morphology interact in a strong feedback manner. Bedload conditions the development of river morphology along different space and time scales; however, by concentrating the flow in preferential paths, a given morphology controls bedload for a given discharge. As bedload is a non‐linear response of shear stress, local morphology is likely to have a strong impact on bedload prediction when the shear stress is averaged over the section, as is usually done. This was investigated by comparing bedload measured in different bed morphologies (step‐pool, plane bed, riffle‐pool, braiding, and sand beds), with bedload measured in narrow flumes in the absence of any bed form, used here as a reference. The initial methodology consisted of fitting a bedload equation to the flume data. Secondly, the morphological signature of each river was studied as the distance to this referent equation. It was concluded that each morphology affects bedload in a different way. For a given average grain shear stress, the larger the river, the larger the deviation from the flume transport. Narrow streams are those morphologies that behave more like flumes; this is particularly true with flat beds, whereas results deviate from flumes to a greater extent in step‐pools. The riffle‐pool's morphology impacts bedload at different levels depending on the degree of bar development, considered here through the ratio D84/D50 which is used as a proxy for the local bed patchiness and morphology. In braiding rivers morphological effects are important but difficult to assess because width is dependent on transport rate. Bed morphology was found to have negligible effects in sand bed rivers where the Shields stress is usually sufficiently high to minimize the non‐linearity effects when hydraulics is averaged over the section. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Artificially straight river channels tend to be unstable, and ultimately develop into river meanders through bank erosion and point‐bar deposition. In this paper account is taken of the effects of riparian and floodplain vegetation on bank strength, floodplain flow resistance, shear stress partitioning, and bedload transport. This is incorporated into an existing 2D hydrodynamic‐morphological model. By applying the new model to an initially straight and single‐threaded channel, the way that its planform and cross‐sectional geometry evolve for different hydraulic and floodplain vegetation conditions is demonstrated. The results show the formation and upstream migration of gravel bars, confluence scouring and the development of meandering and braiding channel patterns. In cases where the channel becomes unstable, the instability grows out of bar formation. The resulting braiding patterns are similar to analytical results. The formation of a transition configuration requires a strong influence from vegetation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Bed load transport rate was measured in ten self-formed small-scale gravel braided streams developed in a laboratory flume at several different values of steady discharge and flume gradient. The streams are approximate Froude models of typical prototype braided streams but of no particular river. Slight viscous effects may be present in the models because particle Reynolds numbers are close to 70. Total bed load discharge was measured every fifteen minutes throughout each 60 hour run. In addition, 80 channel cross-sections were measured in each run to establish the average channel geometry. Total bed load transport rate correlates well with total discharge and total stream power, although at a given stream power bed load discharge is greater when braiding is less intense and the width/depth ratio is lower. Analysis using unit stream power and cross-section average bed shear stress reveals that the laboratory data conform to existing empirical bed load transport relationships. However, comparison with field data from gravel-bed rivers shows discrepancies that may be due to differences in bed material size gradation and bed sediment structure. At constant discharge, wide fluctuations in bed load discharge occur with some regularity. Periods range from 2 to 10 hours in the models, which is equivalent to several tens of hours in a prototype. The presence of these long-period fluctuations compounds the problems of field measurement of bed load in braided streams.  相似文献   

8.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Prior to European settlement, the Upper Hunter River near Muswellbrook, New South Wales, was a passively meandering gravel‐bed river of moderate sinuosity and relatively uniform channel width. Analyses of floodplain sedimentology, archival records, parish maps and aerial photographs document marked spatial variability in the pattern of channel change since European settlement in the 1820s. Different types, rates and extents of change are reported for seven zones of adjustment along an 8 km study reach. This variable adjustment reflects imposed antecedent controls (buried terrace material and bedrock), which have significantly influenced local variability in river sensitivity to change, as well as contemporary morphodynamics and geomorphic complexity. Local variability in system responses to disturbance has important implications for future river management and rehabilitation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Declining sand inputs to a channel with bimodal bed sediment can lead to degradation, armoring, and reduced bedload transport rates. Where sand loading is episodic, channels may alternate between high‐sand and low‐sand conditions, with ensuing responses in bed texture and bedload transport rates. The effects of episodic sand loading are explored through flow, grain size, and bedload transport measurements on the Pasig‐Potrero River, a sediment‐rich channel draining Mount Pinatubo, Philippines. Sand loading on the Pasig‐Potrero River is highly seasonal, and channel adjustments between seasons are dramatic. In the rainy season, inputs from sand‐rich 1991 eruption deposits lead to active, sand‐bedded, braided channels. In the dry season, many precipitation‐driven sand sources are cut off, leading to incision, armoring, and significantly lower bedload transport rates. This seasonal transition offers an excellent opportunity to examine models of degradation, incision, and armoring as well as the effectiveness of sediment transport models that explicitly encapsulate the importance of sand on transport rates. During the fall 2009 seasonal transition, 7·6 km of channel incised and armored, carving a 2–3 m deep channel on the upper alluvial fan. Bedload transport rates measured in the August 2009 rainy season were over four orders of magnitude greater than gravel‐bedded dry‐season channels surveyed in January 2010, despite having similar shear stress and unit discharge conditions. Within dry‐season incised channels, bed armoring is rapid, leading to an abrupt gravel‐sand transition. Bedload transport rates adjust more slowly, creating a lag between armoring and commensurate reductions in transport. Seasonal channel incision occurred in steps, aided by lateral migration into sand‐rich banks. These lateral sand inputs may increase armor layer mobility, renewing incision, and forming terraces within the incised seasonal channel. The seasonal incised channel is currently being reset by precipitation‐driven sand loading during the next rainy season, and the cycle begins again. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

17.
The recent (25 years) morphodynamics of a proglacial reach of the Ridanna Creek, North‐East Italy, evolving in the absence of human constraints, has been investigated by means of an intensive field activity and of the analysis of aerial photographs. The study reach mostly displays a braided morphology, with sharp downstream variations of valley gradient, sediment size and formative conditions within the main channel. These discontinuities are associated with different processes of channel adjustment at different timescales, which have been quantified by coupling hydrological with morphological information. Several processes of channel change and variations in braiding intensity have been documented along the whole reach and highlight how a regular, weakly meandering main channel may significantly affect the morphodynamics of the braided network. A first attempt to predict the morphological instability of this main channel at the observed spatial scales through existing linear theories of curved river channels shows a good agreement with field observations. Finally, the complete hydro‐morphodynamical characterization of such an undisturbed alpine river reach can provide a relevant contribution to the definition of reference conditions for Alpine rivers required by the EU Water Framework Directive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid‐plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one‐dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at‐a‐station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
It is increasingly recognized that effective river management requires a catchment scale approach. Sediment transport processes are relevant to a number of river functions but quantifying sediment fluxes at network scales is hampered by the difficulty of measuring the variables required for most sediment transport equations (e.g. shear stress, velocity, and flow depth). We develop new bedload and total load sediment transport equations based on specific stream power. These equations use data that are relatively easy to collect or estimate throughout stream networks using remote sensing and other available data: slope, discharge, channel width, and grain size. The new equations are parsimonious yet have similar accuracy to other, more established, alternatives. We further confirm previous findings that the dimensionless critical specific stream power for incipient particle motion is generally consistent across datasets, and that the uncertainty in this parameter has only a minor impact on calculated sediment transport rates. Finally, we test the new bedload transport equation by applying it in a simple channel incision model. Our model results are in close agreement to flume observations and can predict incision rates more accurately than a more complicated morphodynamic model. These new sediment transport equations are well suited for use at stream network scales, allowing quantification of this important process for river management applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号