首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
This article reports the results of a field investigation aimed to characterize the morphology of both rills monitored at Sparacia experimental area and two ephemeral gullies (EGs) located in the Tremamargi basin, Sicily, Italy. At first, the available literature data together with the measurements carried out in this investigation were used to show that the EG length is a key parameter for the estimation of the eroded volume. Then, the comparison among the pairs length and volume corresponding to measured rills, EGs and gullies showed that the exponent of the power relationship is independent of the channelized erosion type (rill, EG and gully), while a different scale factor has to be used for each erosion process. Finally, a single relationship applicable to all channelized erosion processes was deduced applying the dimensional analysis and the self‐similarity theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The enrichment of organic matter in interrill sediment is well documented; however, the respective roles of soil organic matter (SOM) and interrill erosion processes for the enrichment are unclear. In this study, organic matter content of sediment generated on two silts with almost identical textures, but different organic matter contents and aggregations, was tested. Artificial rainfall was applied to the soils in wet, dry and crusted initial conditions to determine the effects of soil moisture and rainfall and drying history on organic matter enrichment in interrill sediment. While erosional response of the soils varied significantly, organic matter enrichment of sediment was not sensitive to initial soil conditions. However, enrichment was higher on the silt with a lower organic matter content and lower interrill erodibility. The results show that enrichment of organic matter in interrill sediment is not directly related to either SOM content or soil interrill erodibility, but is dominated by interrill erosion processes. As a consequence of the complex interaction between soil, organic matter and interrill erosion processes, erodibility of organic matter should be treated as a separate variable in erosion models. Further research on aggregate breakdown, in particular the content and fate of the organic matter in the soil fragments, is required. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

5.
Manual digitizing on aerial photographs is still commonly used for characterizing gully erosion over large areas. Even when automated detection procedures are implemented, manual digitizing is frequently being resorted to in order to constitute reference datasets used for training and validation. In both cases, manual digitizing entails some subjective decisions on behalf of the operator, which introduces uncertainty into the resulting datasets. To assess the magnitude of this uncertainty, 11 experienced operators were asked to digitize and classify ephemeral gullies (EGs) on cropland following a standardized methodology. The resulting 11 datasets were compared in terms of number, type and location of EGs. Furthermore, for EGs located on a well‐defined runoff flow concentration axis, the slope versus contributing area topographic thresholds required for initiating gully channels were assessed using four thresholding methods, and compared across the 11 datasets. The operators identified 259 different EGs. However, the number (52–139) and sum total length (8.9–23.7 km) of EGs varied widely across operators. Only 34% of the EGs were digitized by more than half of the operators, and 7% were identified by all. Identification of EGs located on a well‐defined flow concentration axis proved least subjective. The longer the EG and the more fields the EG crossed, the larger the number of operators that were able to identify it. EGs were also most easily identified when located in sugar beet fields as compared to other crops. EG classification and topographic threshold lines were also found to be strongly operator‐dependent. Quantile regression appeared to be one of the most robust thresholding methods. Operator subjectivity when digitizing EGs on orthophotographs introduces uncertainty that should be taken into account in future remote sensing‐based studies of EG erosion whenever they rely, in part or in full, on manual photograph interpretation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Solar radiation-controlled microclimatic variation has been considered a major force on hillslope evolution via feedback among geomorphology, vegetation, soil and hydrology. In this study, we investigate the influence of solar radiation on hillslope dynamics on Santa Catalina Island, CA by comparing hillslope morphology and frequency–magnitude relationships of shallow landslides, rills and gullies on slopes receiving low annual solar radiation (LSR) and high annual solar radiation (HSR), which were found equivalent to north- and south-facing slopes, respectively. LSR slopes on Santa Catalina Island were found more vegetated compared to HSR slopes. LiDAR elevation-derived hillslope morphology showed LSR slopes steeper, rougher and more concave than HSR slopes. Similarly, frequency–magnitude plots showed larger relative frequency of high-magnitude shallow landslides, rills and gullies on LSR slopes, and low-magnitude shallow landslides, rills and gullies on HSR slopes. We argue that the morphology, mass movement and erosion characteristics of LSR and HSR slopes reflect the process–response of microclimate-controlled variation in type and density of vegetation cover, soil physical properties – including moisture, texture, structure, infiltration and erodibility – and surface and subsurface hydrology. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
The erosion rate of cohesive streambanks is typically modelled using the excess shear stress equation, dependent on two erodibility parameters: critical shear stress and erodibility coefficient. The jet erosion test (JET) has become the most common method for estimating these erodibility parameters in situ. Typically, results from a few JETs are averaged to acquire a single set of parameters for characterizing a streambank layer; however, this may be inadequate for accurately characterizing erodibility. The research objectives were to investigate the variability of JET results from assumed homogeneous streambank layers and to estimate the number of JETs required to accurately characterize erodibility for use in predictive models. On three unique streambanks in Oklahoma and across a range of erodibility, 20 to 30 JETs were conducted over a span of three days at each site. Unique to this research, each JET was analysed using the Blaisdell, scour depth and iterative solutions. The required sample size to accurately estimate the erodibility parameters depended on the JET solution technique, the parameter being estimated, and the degrees of precision and confidence. Conducting three to five JETs per soil layer on a streambank typically provided an order of magnitude estimate of the erodibility parameters. Because the parameters were log‐normally distributed, using empirical equations to predict erosion properties based on soil characteristics will likely contain high uncertainty and thus should be used with caution. This study exemplifies the need to conduct in situ measurements using the JET to accurately characterize streambank resistance to fluvial erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Glenn Wilson 《水文研究》2011,25(15):2354-2364
The role of soil pipeflow in ephemeral gully erosion is not well understood. Experiments were conducted on continuous soil pipes to better understand the role of internal erosion of soil pipes and its relation to ephemeral gully development. Soil beds of 140 cm length, 100 cm width and 20 cm depth had a single soil pipe of different initial sizes (2, 4, 6, 8, and 10 mm diameter) extend from a water reservoir to the outlet. Experiments were run on Providence silt loam and Smithdale loam soils under a constant head of 15 cm established for 30 min. Either the tunnel collapsed or the head could not be maintained. Soil pipes that were initially 2 and 4 mm clogged instantaneously at their mouth and did not exhibit flow, whereas, pipes initially ≥ 6 mm enlarged by 268, 397, and 699% on average for the 6, 8, and 10 mm diameters, respectively. Critical shear stress values were found to be essentially zero, and erodibility values gave erosion indexes that were extremely high. The rapid internal erosion resulted in erratic flow and sediment concentrations with periods of no flow as pipes were temporarily clogged followed by surges of high flow and high sediment concentrations. Tensiometers within 6 cm of the soil pipes did not exhibit pressure increases typically associated with pipe clogging. Flow through 10 mm diameter soil pipes exhibited tunnel collapse for both soils tested. Tunnel collapse typically occurred within minutes of flow establishment suggesting that ephemeral gullies could be misinterpreted as being caused by convergent surface flow if observations were made after the runoff event instead of when flow is first established through soil pipes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
SOIL SHEAR STRENGTH: AN INDICATOR FOR ERODIBILITY OF THE LOESS SOILS   总被引:1,自引:0,他引:1  
SOILSHEARSTRENGTH:ANINDICATORFORERODIBILITYOFTHELOESSSOILSWANGGuiping;WEIZhongpingandZHANGZhiguoAbstract:FieldexperimentSunde...  相似文献   

12.
Recent research has indicated the large spatial and temporal variation in soil erosion resistance against concentrated flow (SER). This study analyzes this variability in relation to rill and gully initiation locations on slopes and the downslope eroded volumes. The soil erodibility (Kc) and critical flow shear stress (τcr), were estimated from topsoil properties and correlated to eroded rill and gully volumes and their initiation points on slopes in the Belgian loess belt. Therefore, concentrated flow paths and topsoil properties were measured in their vicinity. The results show that rill and gully initiation points, and hence the lengths of concentrated flow paths, depend on τcr, which is controlled by soil surface conditions and can be predicted from saturated soil shear strength. Soil erosion control measures that increase soil shear strength (e.g. thalweg compaction), can therefore decrease rill and gully lengths. Once a rill or an ephemeral gully is initiated, its cross‐section was found to depend on Kc, which can be estimated from the soil water content, dry bulk density, and the dry density of roots and crop residues incorporated in the topsoil. 74% of the variation in the channel cross‐sectional area measured in the study area could be predicted from the combined effect of flow intensity and these three soil properties, whereas flow intensity alone could only account for 31% of the variation. Soil conservation measures affecting one of the soil properties that control Kc (e.g. double drilling of the thalweg, conservation tillage) can therefore decrease the cross‐sections of the concentrated flow paths. These findings also indicate that rill and gully initiation points are not only topographically controlled but also depend on the SER, which in turn determines the dimensions of these concentrated flow paths. Hence, knowledge of the variability in SER is indispensable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Maize growth has great effects on soil properties and thus likely induces the changes in soil erosion resistance on sloping farmland. However, temporal variation of soil erosion resistance during the growth stages of maize is still unclear in the mountainous yellow soil area where maize is the dominant crop. In this study, four maize plots (MP) and four bare land plots (CK) were conducted to investigate soil erosion resistance, and multiple indicators of soil erosion resistance were measured including the total soil anti-scourability (TAS), mean weight diameter (MWD), soil erodibility K factor and soil shear strength (SH). A comprehensive soil erosion resistance index (CSERI) was employed to quantify the temporal variation of soil erosion resistance during the growth stages of maize (seedling stage, SS; jointing stage, JS; tasselling stage, TS; maturing stage, MS). The results showed that TAS, MWD, SH increased significantly with maize growth and SH decreased when at MS. But K factor decreased significantly over time. CSERI increased significantly during the growth stages of maize and the CSERI of JS, TS, MS increased on average by 74.72, 180.68 and 234.57% than that of SS. Compared to CK, CSERI of MP increased by 49.90, 66.82, 55.60 and 38.61% during the growth stages of maize. The temporal variation of soil erosion resistance was closely related to the changes in maize cover, maize roots and soil organic carbon. The findings demonstrated that it is necessary to consider the temporal variation of soil erosion resistance in the mountainous yellow soil area.  相似文献   

14.
The factors influencing soil erosion may vary with scale. It remains unclear whether the spatial variation in soil erosion resistance is controlled by regional variables (e.g. precipitation, temperature, and vegetation zone) or by local specific variables (e.g. soil properties, root traits, land use, and farming operations) when the study area enlarges from a hillslope or catchment to the regional scale. This study was performed to quantify the spatial variations in soil erosion resistance to flowing water under three typical land uses along a regional transect on the Loess Plateau and to identify whether regional or local specific variables are responsible for these changes. The results indicated that the measured soil detachment capacities (Dc) of cropland exhibited an irregular trend along the regional transect. The Dc of grassland increased with mean annual precipitation, except for two sites (Yijun and Erdos). The measured Dc of woodland displayed an inverted ‘U’ shape. The changes in rill erodibility (Kr) of three land uses were similar to Dc, whereas no distinguishable trend was found for critical shear stress (τc). No significant correlation was detected between Dc, Kr and τc, and the regional variables. The spatial variation in soil erosion resistance could be explained reasonably by changes in soil properties, root traits, land use, and farming operations, rather than regional variables. The adjustment coefficient of Kr for grassland and woodland could be well simulated by soil cohesion and root mass density (R2 = 0.70, P < 0.01), and the adjustment coefficient of critical shear stress could be estimated with aggregate stability (R2 = 0.57, P < 0.01). The results are helpful for quantifying the spatial variation in soil detachment processes by overland flow and to develop process‐based erosion model at a regional scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Mechanistic models have been proposed for soil piping and internal erosion on well‐compacted levees and dams, but limited research has evaluated these models in less compacted (more erodible) soils typical of hillslopes and streambanks. This study utilized a soil box (50 cm long, 50 cm wide and 20 cm tall) to conduct constant‐head, soil pipe and internal erosion experiments for two soils (clay loam from Dry Creek and sandy loam from Cow Creek streambanks) packed at uniform bulk densities. Initial gravimetric moisture contents prior to packing were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1‐cm diameter rod was placed horizontally along the length of the soil bed during packing and carefully removed after packing to create a continuous soil pipe. A constant head was maintained at the inflow end. Flow rates and sediment concentrations were measured from the pipe outlet. Replicate submerged jet erosion tests (JETs) were conducted to derive erodibility parameters for repacked samples at the same moisture contents. Flow rates from the box experiments were used to calibrate the mechanistic model. The influence of the initial moisture content was apparent, with some pipes (8% moisture content) expanding so fast that limited data was collected. The mechanistic model was able to estimate equivalent flow rates to those observed in the experiments, but had difficulty matching observed sediment concentrations when the pipes rapidly expanded. The JETs predicted similar erodibility coefficients compared to the mechanistic model for the more erodible cases but not for the less erodible cases (14% moisture content). Improved models are needed that better define the changing soil pipe cross‐section during supply‐ and transport‐limited internal erosion, especially for piping through lower compacted (more erodible) soils as opposed to more well‐compacted soils resulting from constructing levees and dams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Extreme rainfall events (>50 mm day?1) falling on cultivated land which is relatively bare of vegetation cover, typically give rise to networks of rills and gullies with ephemeral gullies in depressions and valley bottoms. Farming practices such as the removal of field boundaries, the presence of wheelings and rolled surfaces encourage runoff. The coincidence of vulnerable crops such as maize, potatoes and sugar beet with erodible soils and sloping sites may lead to high rates of erosion associated with single events or wet seasons. Not all extreme rainfall events lead to runoff and erosion, this depends on timing with respect to the growing crop. Rates of erosion associated with extreme events may be high but when placed in a long‐term temporal context, they tend to be quite low. Extreme events frequently lead to off‐site impacts most notably muddy flooding of properties and the pollution of watercourses. Landscapes may be protected from extreme events by standard soil conservation techniques; off‐site impacts may similarly be alleviated by flood‐protection measures. In both cases, the challenge is to put in place adequate economic incentives, social pressures and governmental policy frameworks to incentivise effective action. Predicted rainfall changes in the future include wetter winters and increases in rain per rain‐day. In this case, the risk of erosion on cultivated land will increase. However, erosion mitigation strategies should still address the issue of the incidence of high‐risk crops on vulnerable sites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Hydraulic thresholds for erosion of fourteen upland mineral and organic soils were determined in a hydraulic flume. These soils are from areas to be afforested in the United Kingdom. Some of the group are erosion resistant but others are susceptible to erosion once denuded of vegetation; for example, by preafforestation ploughing. These threshold data were required to calibrate a hydraulic model for effective design of preafforestation drainage networks on a variety of soils. However, simple field measures of soil properties indicative of erosion potential would be of value to the forestry industry for management purposes. Consequently, hydraulic threshold data were related by linear regression methods to basic soil properties, including organic content, grain size, bulk density, compression strength and penetration resistance. The investigation concluded that four peat soils are not eroded by clear water velocities up to 5·7 m s−1, although a mineral bedload might induce erosion at lesser current speeds. Penetration resistance is a good field indicator of the degree of humification of the peat soils. Although selected physical parameters contribute resistance to water erosion, an increased organic content is pre-eminent in reducing erosion susceptibility in both organic and mineral soils. Although compressive strength was not indicative of soil erodibility, field measurements of penetration resistance on a variety of soils could be related to hydraulic thresholds of erosion; albeit through the construction of discriminant functions interpolated by eye. Consequently, organic content (laboratory) or penetration resistance (field) might form the basis of classifying upland soils in terms of erodibility. Mineral soils differ widely in terms of their erodibility, so that subject to further consideration, the use of ploughing for forestry cultivation might be appropriate in wider circumstances than presently recommended by the Forests and Water Guidelines. Ploughing should be acceptable on deep peat providing the underlying mineral soil is not exposed in the bottom of the furrow, and furrows are not led from mineral soils on to deep peat. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Although there is much evidence of intense soil erosion in cultivated areas of Navarre (Spain), scarce information currently is available regarding soil loss rates, the spatial and temporal distribution of erosion, and the factors controlling these processes. Rills and ephemeral gullies are frequently responsible for a high percentage of total soil erosion, and these features can be considered a good approximation for the minimum erosion rates. With the main purpose of determining the annual soil loss rates in cultivated areas of Central Navarre, a detailed assessment of rainfall and rill and gully erosion was made in 19 small watersheds cultivated with winter grains or vineyards. The study period spanned from 1995 to 2001. For cereal watersheds, soil losses were caused by only one or two rainfall events each year. High erosion rates were observed (0.20-11.50 kg/m^2 per year). In vineyards, soil losses were caused by several rainfall events each year, occurring year round. High erosion rates were observed in these vineyards (0.33 y 16.19 kg/m^2 per year). No erosion was observed in those cultivated watersheds with no-till practices. It can be concluded that rill and ephemeral gully erosion can be very significant in Mediterranean regions, and much more attention should be paid to the problem.  相似文献   

19.
Erosion caused by concentrated flows in agricultural areas is responsible for important soil losses, and rapid sediment transfer through the channel network. The main factors controlling concentrated flow erosion rates include the erodibility of soil materials, soil use and management, climate and watershed topography. In this paper, two topographic indices, closely related to mathematical expressions suggested by different authors, are used to characterize the influence of watershed topography on gully erosion. The AS1 index is defined as the product of the watershed area and the partial area‐weighted average slope. The AS2 index is similar to the AS1 but uses the swale slope as the weighting factor. Formally, AS2 is the product of the watershed area and the length‐weighted average swale slope. From studies made using different ephemeral gully erosion databases, it is shown that a high correlation consistently exists between the topographic indices and the volume of eroded soil. The resulting relationships are therefore useful to assess soil losses from gully erosion, to identify the most susceptible watersheds within large areas, and to compare the susceptibility to gully erosion among different catchments. This information is also important in studying the response of natural drainage network systems to different rainfall inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
ROCESSES OF EPHEMERAL GULLY EROSION   总被引:2,自引:0,他引:2  
IINTRoDUCTIONEphemeralgulliesaresmallerosionalchannelsonagriculturalIandscapescausedbytheconcentrationofoverlandflowtypicallybetweentwoopposingslopes(ahollow),oftenformedduringasingIerainfaIlevent.Sincethescouredsoilvolumeisnotverylargewithinthesegullies,farmerscaneasilyrefillthem.Ingeneral,ephemeralgulliescanreappearatornearthesamelocationonayearlybasisbecausethesurfacetopograPhyofthefielddoesnotchangeappreciably.Mostephemeralgulliesoccuroncultivatedfieldswithhighlyerodiblesoils,withlit…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号