首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用三频数据最优组合求解电离层延迟的方法   总被引:1,自引:0,他引:1  
针对利用双频观测值估计双差电离层延迟量时间长、精度低等问题,基于三频载波观测值,提出了一种适用于长距离双差电离层延迟量实时估计的方法。首先,根据不同观测值线性组合的误差特性,选择求解电离层延迟量的最优组合观测值;然后,在准确获取最优组合观测值对应模糊度的基础上求解电离层延迟量初值;最后,引入平滑思想,通过Hatch滤波进一步优化电离层延迟量初值。算例分析表明,只要利用几十甚至十几个历元,双差电离层延迟量估值精度即可有效控制在2cm之内,实现了长距离双差电离层延迟量实时、高精度估计。  相似文献   

2.
介绍了电离层的概况,GPS信号在电离层中的传播,电离层改正模型以及利用GPS双频观测值来建立电离层延迟或VTEC模型的原理、方法和结果。  相似文献   

3.
利用GPS监测电离层总电子含量的季节性变化   总被引:3,自引:0,他引:3  
利用Georgiadiou电离层模型计算了GPS系统硬件延迟,从而由双频伪距观测值获取绝对电离层总电子含量值。利用北京IGS站的GPS观测数据分别计算了2000年和2004年各个不同月份的总电子含量值,对两年各月份的总电子含量进行多项式拟合,发现总电子含量的季节性变化趋势一致。  相似文献   

4.
全球定位系统差分实时定位技术概论陈俊勇(国家测绘局)第三讲四、电离层延迟参数的差分改正计算GPS卫星发射的电磁波的传输当然要受到电离层的影响,即产生由于电离层的影响而使传播时间的延迟。在GPS用户有双频接收机的情况下,原则上可以利用电离层时间延迟和频...  相似文献   

5.
针对电离层改正会引起观测噪声放大,尤其三频二阶改正致使观测噪声被过分放大的不足,该文分别推导了BDS电离层双频一阶改正、三频一阶改正和三频二阶改正模型及三频载波无电离层组合模型。改正电离层延迟的同时会不同程度地放大观测噪声,为此分析比较了各种方法改正后的观测值精度和观测噪声,并对不同方法的应用进行了分析。  相似文献   

6.
三频电离层延迟改正中多路径误差和观测噪声的削弱算法   总被引:2,自引:0,他引:2  
多频测距系统可以借助多频观测数据削弱电离层延迟的影响,但多频改正算法在改正电离层延迟项的同时会不同程度地放大多路径误差、观测噪声等伪距误差的影响。其中利用三频数据可以将电离层延迟改正至二阶项,也可以只改正至一阶项,分别称为三频二阶改正和三频一阶改正。首次推导了利用三频观测数据削弱伪距中多路径效应和观测噪声等误差的算法,使三频电离层延迟改正中伪距误差的影响大大减小。通过对三频实测数据的处理和分析验证了算法的有效性并给出了一些有益的结论和建议:在利用三频观测数据进行电离层改正时,首先改正伪距中的多路径误差和观测噪声,然后采用三频二阶改正算法将电离层延迟改正至二阶项,将有效提高伪距改正精度。如果不能有效削弱这些误差的影响,宜采用三频一阶改正或双频改正。  相似文献   

7.
利用单频码、相位和GRAPHIC组合3个观测量的两两组合可以构造3种单频精密单点定位观测模型:基于码和GRAPHIC观测量的C-G模型,基于GRAPHIC和相位观测量的G-P模型和基于码和相位观测量的C-P模型。针对电离层延迟改正问题,考虑了最高精度的模型改正方法——IGS格网电离层改正和估计电离层延迟参数两种方案。采用全球分布的15个IGS监测站16d的数据和一组机载动态GPS数据进行解算实验。结果表明,不同观测模型和不同的电离层延迟处理方法,定位效果有明显差异。  相似文献   

8.
联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于与电离层有关的研究。然而,平滑伪距电离层观测值易受平滑弧段长度和与测站有关的误差影响。提出一种新算法:利用非组合精密单点定位技术(precise point positioning,PPP)计算电离层观测值(称之为"PPP电离层观测值"),进而估计sTEC和站星DCB。基于短基线试验,先用一台接收机按上述两种方法估计sTEC,用于改正另一接收机观测值的电离层延迟以实施单频PPP,结果表明,利用PPP电离层观测值得到的sTEC精度较高,定位结果的可靠性较强。随后,选取全球分布的8个IGS(internationalGNSS service)连续跟踪站2009年1月内某四天的观测数据,利用上述两种电离层观测值计算所有卫星的DCB,并将计算结果与CODE发布的月平均值进行比较,其中,平滑伪距电离层观测值的卫星DCB估值与CODE(Centre for Orbit Deter mination in Europe)发布值的差别较大,部分卫星甚至可达0.2~0.3 ns,而PPP电离层观测值而言,绝大多数卫星对应的差异均在0.1 ns以内。  相似文献   

9.
梁霄  杨玲  黄涛  王延兵 《测绘工程》2016,25(1):24-28
利用载波相位双差观测值的宽巷和无电离层组合固定部分模糊度参数,并采用Kalman滤波算法估计残余的对流层延迟;然后对观测值进行改正,剔除对流层延迟误差,从而提高剩余模糊度参数的固定率;最后估计双差电离层延迟。文中采用美国CORS网的GPS数据进行实验,实验结果表明,自适应滤波算法可明显提高残余对流层延迟的解算精度和模糊度的解算效率;固定模糊度并改正对流层和电离层延迟,差分定位精度得到很大提高。  相似文献   

10.
从利用GPS提取区域电离层总电子含量(total electron content,TEC)的基本原理出发,解决了伪距观测值优化以及硬件延迟(DCB)处理问题,并将提取的TEC信息与欧洲定轨中心(CODE)计算的全球电离层(GIM)模型内插值应用在单频精密单点定位中,进行电离层延迟改正实验。结果表明,利用本文提取的TEC值进行单频精密单点定位电(PPP)离层延迟改正时,点位精度能提高到0.2~0.4m左右,明显优于利用GIM内插值的改正精度。  相似文献   

11.
Global Positioning System (GPS) total electron content (TEC) measurements, although highly precise, are often rendered inaccurate due to satellite and receiver differential code biases (DCBs). Calculated satellite DCB values are now available from a variety of sources, but receiver DCBs generally remain an undertaking of receiver operators and processing centers. A procedure for removing these receiver DCBs from GPS-derived ionospheric TEC at high latitudes, using Canadian Advanced Digital Ionosonde (CADI) measurements, is presented. Here, we will test the applicability of common numerical methods for estimating receiver DCBs in high-latitude regions and compare our CADI-calibrated GPS vertical TEC (vTEC) measurements to corresponding International GNSS Service IONEX-interpolated vTEC map data. We demonstrate that the bias values determined using the CADI method are largely independent of the topside model (exponential, Epstein, and α-Chapman) used. We further confirm our results via comparing bias-calibrated GPS vTEC with those derived from incoherent scatter radar (ISR) measurements. These CADI method results are found to be within 1.0 TEC units (TECU) of ISR measurements. The numerical methods tested demonstrate agreement varying from within 1.6 TECU to in excess of 6.0 TECU when compared to ISR measurements.  相似文献   

12.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

13.
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.  相似文献   

14.
基于球谐函数区域电离层模型建立   总被引:1,自引:0,他引:1  
利用GPS双频观测数据建立高精度、准实时的区域电离层总电子含量(TEC)模型是电离层研究的一个重要手段。文中探讨IGS观测站数据结合4阶球谐函数建立区域电离层格网模型的方法,并对硬件延迟(DCB)和TEC建模结果的可靠性进行分析,结果表明,DCB解算精度在0.4ns以内,TEC内外精度优于1.4TECU(1TECU=1016电子数/m2)和1.5TECU,满足导航定位中电离层改正的需要。  相似文献   

15.
Global navigation satellite systems (GNSS) have been widely used to monitor variations in the earth’s ionosphere by estimating total electron content (TEC) using dual-frequency observations. Differential code biases (DCBs) are one of the important error sources in estimating precise TEC from GNSS data. The International GNSS Service (IGS) Analysis Centers have routinely provided DCB estimates for GNSS satellites and IGS ground receivers, but the DCBs for regional and local network receivers are not provided. Furthermore, the DCB values of GNSS satellites or receivers are assumed to be constant over 1?day or 1?month, which is not always the case. We describe Matlab code to estimate GNSS satellite and receiver DCBs for time intervals from hours to days; the software is called M_DCB. The DCBs of GNSS satellites and ground receivers are tested and evaluated using data from the IGS GNSS network. The estimates from M_DCB show good agreement with the IGS Analysis Centers with a mean difference of less than 0.7?ns and an RMS of less than 0.4?ns, even for a single station DCB estimate.  相似文献   

16.
Automated GPS processing for global total electron content data   总被引:4,自引:2,他引:4  
A software package known as MIT Automated Processing of GPS (MAPGPS) has been developed to automate the processing of GPS data into global total electron density (TEC) maps. The goal of the MAPGPS software is to produce reliable TEC data automatically, although not yet in real time. Observations are used from all available GPS receivers during all geomagnetic conditions where data has been successfully collected. In this paper, the architecture of the MAPGPS software is described. Particular attention is given to the algorithms used to estimate the individual receiver biases. One of the largest sources of error in estimating TEC from GPS data is the determination of these unknown receiver biases. The MAPGPS approach to solving the receiver bias problem uses three different methods: minimum scalloping, least squares, and zero-TEC. These methods are described in detail, along with their relative performance characteristics. A brief comparison of the JPL and MAPGPS receiver biases is presented, and a possible remaining error source in the receiver bias estimation is discussed. Finally, the Madrigal database, which allows Web access to the MAPGPS TEC data and maps, is described.  相似文献   

17.
施闯  辜声峰  楼益栋  郑福  宋伟  张东  毛飞宇 《测绘学报》2022,51(7):1206-1214
广域实时精密定位与时间服务已成为GNSS应用领域研究热点,目前国内外学者围绕其模型算法已展开大量的研究。本文重点论述广域实时精密定位与时间服务数据的处理方法和服务系统,给出了基于不同基准约束的卫星钟差解算数学模型,提出通过引入外接原子钟测站、标准时间源(UTC/BDT)等不同时间基准,构建卫星拟稳基准、外接原子钟跟踪站拟稳基准及标准时间源等约束下的钟差解算模型,分析了时间基准对精密单点定位和精密单点授时的影响。本文采用实时卫星轨道、钟差、相位偏差、电离层延迟等服务产品及跟踪站实时数据,验证了系统产品可靠性及终端定位与时间服务性能。实测结果表明:GPS轨道径向精度1.8 cm,钟差STD精度约0.05 ns;BDS-3轨道径向精度6.7 cm,钟差STD精度优于0.1 ns;GPS和BDS-2电离层改正精度分别为0.74 TECU与1.03 TECU。基于该产品实现了用户端PPP、PPP-RTK及PPT、PPT-RTK服务,满足了用户实时厘米级定位和优于0.5 ns的单站时间传递服务,当采用GPS+BDS-2 PPP-RTK解算时,平面收敛至5 cm约需要12 min。  相似文献   

18.
The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.  相似文献   

19.
李昕  郭际明  周吕  覃发超 《测绘学报》2016,45(8):929-934
提出了一种精确估计区域北斗接收机硬件延迟(DCB)的方法。该方法不需要传统复杂的电离层模型,在已知一个参考站接收机硬件延迟的条件下,利用正常情况下电离层延迟量和卫星-接收机几何距离强相关这一特点,采用站间单差法来精确估计区域内BDS接收机的硬件延迟。试验结果表明,该方法单站估计的单站北斗接收机连续30d的硬件延迟RMS在0.3ns左右。通过GEO卫星双频观测值扣除已知卫星DCB和本文方法估计的接收机DCB,计算对应穿刺点一天的VTEC并和GIM格网内插结果并进行比对分析,二者大小和变化趋势均符合较好,进一步验证了本文提出的方法具有可靠性。  相似文献   

20.
郭丽  李金岭 《测绘学院学报》2005,22(2):91-93,96
结合我国探月项目卫星VLBI测轨资料分析中的实际需求讨论了两个问题:一是在S、X波段时延测量精度均为1ns情况下,电离层延迟改正所能够达到的精度;二是在飞行器VLBI测轨过程中,不能确保S、X波段双频观测情况下获取电离层时延改正的可能途径,包括借助于相关电离层模型、利用常规VLB1历史观测资料积累、借助于局域GPS观测网和IGS网单站GPS测量以及借助于专门设计的单站GPS测量等。最后对电离层VLB1和GPS技术实测结果进行了比较和问题分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号