首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of the previous quantitative modeling of trace element behavior in magmatic pro-cesses such as fractional crystallization ,batch melting and magma mixing,the author has shown the covariance relationship between compatible and incompatible elements. The discussion of the covariance relationship among trace elements indicates that the covariance relationship can be used to study the petrogenesis of igneous rocks and that the relationship be-tween compatible and incompatible elements are most important in distinguishing equilibrium process(melting and crystallization )from other magmatic processes, i.e.,the former shows a hyperbola trend on C1^i vs .C1^i diagrams,and however, the fractional process gives an exponent curve and magma mixing presents a straight line .On the other hand ,log C1^i vs .C1^i diagrams are also discussed here. Alkaline rocks from Zijinshan, Lin County, Shanxi Province are taken for example in our study ,indicating that the rocks were derived from batch melting of the upper mantle.  相似文献   

2.
Magmatic microgranular enclaves (MMEs) are widely developed in the Shaocunwu granodiorite at the northeast margin of the eastern Jiangnan orogenic belt.Field geology showed that the MMEs occur as irregular ellipsoids near the edge of the intrusion,and consist of diorite,dominantly composed of amphibole,biotite,and plagioclase grains,with minor acicular apatite.Zircon U-Pb dating showed the ages of the host granodiorites and MMEs are 145.9±1.1 Ma and 145.6±2.5 Ma,respectively,indicating both originated during coeval late Jurassic magmatism.Whole-rock geochemical results show that the host granodiorite and MMEs have similar rare earth and trace element partition curves in spider grams,and similar ~(87)Sr/~(86)Sr,and ~(147)Nd/~(144)Nd isotope ratios,and their zircon ~(177)Hf/~(176)Hf isotopic ratios are similar.Geochemical studies indicate that both the host granodiorite and MMEs formed by mixing of coeval magma.Zircon Ti thermometers and oxygen fugacity of the host granodiorite and the MMEs show high oxygen fugacity,similar to that of W-Cu (Mo) mineralized granitoids in the eastern Jiangnan orogenic belt.A similar magma mixing process was probably one of the mechanisms that generated the W-Cu (Mo) fertile melts.  相似文献   

3.
The early Jurassic Dashipo-Heishantuo batholith in Beijing, which consists of the Dashipo hornblende-biotite syenite and Heishantuo granite, exposed in the western Yanshan orogenic belt, eastern North China Craton. The Dashipo syenite is magnesian potassic intermediate rock enriched in large ion lithophile elements such as Rb, Ba, Sr, Pb and LREE, and relatively depleted in high field strength elements such as Nb, Ta, U, Th, Zr, Hf as well as P and Ti, with εNd(t) values from -12.1 to -12.2 and ISr values of 0.70506-0.70464. The Heishantuo granite is magnesian peraluminous high K calc-alkaline, with an enrichment of large ion lithophile elements and radioactive elements such as Rb, Ba, Th, U and Pb, and a depletion of HREE and high field strength elements such as Nb, Ta, Zr and Hf as well as Sr, P and Ti, with εNd(t) values from -15.5 to -18.0 and ISr values of 0.70516-0.70593. The magma of the Dashipo syenite is produced by fractional crystallization of mantle-derived K-rich mafic magma under high pressure. The partial melting of the lower crust, which was heated and metasomatised by the mantle-derived magma, produced granitic magma that intruded into the unconsolidated Dashipo syenite to form the concentric batholith. The petrology and geochemistry of the Dashipo hornblende-biotite syenite indicate that the water weakening was important for the lithospheric destruction within the interior part of the North China Craton. Meanwhile, the partial melting related to the double-diffusion of energy and chemical composition between mantle-derived magma and crustal rocks was an important mechanism for the Mesozoic calc-alkaline felsic magmatism occurred in the interior of the North China Craton. ©, 2015, Science Press. All right reserved.  相似文献   

4.
The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K2O(1.21%),∑REE (278μg/g) ,and LILE(such as Rb, Ba, K, Th, etc.) , with high (La/Yb)N ratios(14.4),on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts.Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orngenic belt, solely based on their geochemical data,especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.  相似文献   

5.
Three melting events of the earth's crust occurred during the period of 220-120 Ma in the Shandong Pe-ninsula. Three subcycles of granitoid magma including six rock series were generated in the faulted granitoidmagma belt. The parent magma of several rock series formed earliest originated from the lower crust ofgranulite facies; following the increase of geothermal temperature the source magma would migrate into themiddle crust of amphibolite facies. In the diapiric granitoid magma belt, the granitoid magma was formed firstin granitic layer of the upper crust, and then in the middle crust. In each subcycle the generation of magmastarted with the generation of more mafic one and finished with low eutectic one; they were formed in the formof layered melting in a particular position of the crust.  相似文献   

6.
A Metallogenic Model of Gold Deposits of the Jiaodong Granite-Greenstone Belt   总被引:34,自引:0,他引:34  
An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Ind  相似文献   

7.
Beishan Terrane, located in the northeast of the Tarim Block, in northwest China, has developed a 500-km long and 100-km wide belt of Permian mafic–ultramafic intrusions One of these mafic–ultramafic intrusions, the Xuanwoling Intrusion, is composed of dunite, troctolite, olivine gabbros and gabbros, with cumulate texture and rhythmic layering The crystallization sequence is olivine ? spinel ? plagio clase ? pyroxene, indicating that the crystallization pressure is lower than 0.5–0.8 GPa and that the intrusion has undergone variable degrees of crustal contamination, increasing from dunite to gabbros. The olivines found in the Xuanwoling Intrusion have high Fo values(up to 90), suggesting a primary magma with a high composition of mg. It is likely that this high-mg magma was produced at extremely high temperatures(1,330–1,350 °C), and as a result, Nd–Sr isotopic compositions similar to oceanic island basalts are found in the Xuanwoling Intrusion, which we propose arose from the mantle plume.  相似文献   

8.
This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.  相似文献   

9.
Fresh rocks sampled from the 14.0°S hydrothermal field of the South Atlantic Ridge can be divided into two categories: olivine-gabbro and basalt. The olivine-gabbro is composed mainly of three types of minerals: olivine, clinopyroxene and plagioclase, while a multitude of melt inclusions occur in the plagioclase phenocrysts of the basalts. We analyzed the whole-rock, major and trace elements contents of the basaks, the mineral chemistry of phenocrysts and melt inclusions in the basalts, and the mineral chemistry of olivine-clinopyroxene-plagioclase in the olivine-gabbro, then simulated magma evolution within the crust using the COMAGMAT program. The whole-rock geochemistry shows that all the basalts exhibit typical N-MORB characteristics. In addition, the mineral chemistry characteristics of the olivine-gabbro (low-Fo olivine, low-Mg# clinopyroxene, high-TiO2 clinopyroxene, low-An plagioclase), show that strong magma differentiation occurred within the crust. Nevertheless, significant discrepancies between those minerals and phenocrysts in the basalts (high-Fo olivine, high-An plagioclase) reflect the heterogeneity of magma differentiation. High Mg# (-~0.72) melt inclusions isobaric partial crystallization simulations suggest that the magma differentiation occurred at the depth shallower than 13.03 km below the seafloor, and both the vertical differentiation column shows distinct discrepancies from that of a steady-state magma chamber. Instead, a series of independent magma intrusions probably occurred within the crust, and their corresponding crystallized bodies, as the primary high-temperature thermal anomalies within the off-axis crust, probably act as the heat source for the development of the 14.0°S hydrothermal system.  相似文献   

10.
The Chagele is a typical Pb-Zn-Cu-Mo deposit located in the western Nyainqentanglha Pb-Zn-Ag-Fe-Cu metallogenic belt (NPMB) that immediately north of the Gangdese porphyry copper belt, Tibet. The deposit contains three ore types: the porphyry (Cu) Mo ores occur as thin veins hosted in the granite porphyry; the skarn (Cu) Pb-Zn type ores are of vein-type or lenticular-type mainly occurring in the external contact zone and interstratified crack zone; and the hydrothermal vein Pb-Zn type ores are controlled by the NNE-striking faults and situated in the structural fractured zones and the up walls of fault zones. The (Cu) Pb-Zn ores consist mainly of galena, sphalerite, chalcopyrite, pyrite, malachite, showing automorphic granular, hypautomorphic to allotriomorphic granular and metasomatic-relict textures, and exhibiting mainly veined, banded, disseminated and massive structures. Hydrothermal alteration includes skarnization, silicification and limonitization. The (Cu) Mo ores consists mainly of chalcopyrite and molybdenite, and minor pyrite. The (Cu) Mo ores are characterized by scaly texture, veinlet and massive structures. It has reserves of 0.38 Mt Pb, 0.6 Mt Zn and 110.1 t Ag, with average grade of 2.08%, 3.29% and 6.07 g/t, respectively, and is considered as a deposit with huge ore-prospecting potential in western of NPMB. However, the ore-forming material and genesis of the Chagele deposit are still not clear. This paper systematically investigated the H, O, S and Pb isotopes of the Chagele deposit and compared it with the other Pb-Zn (Cu-Mo) deposits in the middle-east segment of NPMB. Isotopic geochemical analyses showed that the fluids have δ18O values of -2.2‰ to 2.9‰ and δD values of -189‰ to -157‰, respectively, indicative of mixing between magmatic and meteoric waters. The bimodal distribution of δ34 S values for sulfides (-5.6‰ to -0.8‰, the average: -3.7‰ and 1.1‰ to 2.6‰, the average: 1.8‰) indicated that sulfur of the ores were derived from both wall rocks and magma, while the Cu-Mo orebodies was mainly derived from the granite porphyry. The sulfides have 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values in ranges of 18.614 to 18.688, 15.657 to 15.747 and 38.988 to 39.269; similarly the granite porphyries have 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 18.663 to 19.058, 15.643 to 15.664, and 39.002 to 39.559, respectively, implying that both of them were originated from the upper crust. The H-O-S-Pb isotopic characteristics of the Chagele deposit are similar to those of the Pb-Zn polymetallic deposits in the mid-east NPMB, suggesting that these deposits have similar ore-forming fluid and material sources. It can be concluded that the Chagele deposit is a typical porphyry type Mo deposit + skarn type-hydrothermal vein type of Cu-Pb-Zn deposit. Moreover, we argue that the mineralization is not only confined to the mid-east NPMB, the western segment of the belt with similar tectonic-magmatism also has high potential of ore mineralization. © 2018, Science Press. All right reserved.  相似文献   

11.
In this paper,we present the occurrence and mineral components of the enclaves firstly dis-covered in the Cenozoic Pulu volcanic rocks in west Kunlun Mountains,and propose that the enclave is accumulated by fractional crystallization within high-level magma chamber.In addition,the chemical compostions of its primary magma are calculated.The calculated compositions are similar to those of the Kangxiwa volcanic rocks that belong to the same volcanic belt in the Pulu volcanic region,suggesting their origin from the same source region.However,the temperatures and oxygen fugacity of magmas at high-level magma chamber decreased along with fractional crystallization.  相似文献   

12.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

13.
The Kuandian Complex is scarcely preserved Early Proterozoic volcanic suite, formed2.3-2.4 Ga ago. It is located in an Early Proterozoic mobile belt bounded by the ArchaeanRangrim and Ryonggang Blocks of the northeastern Sino-Korean Craton. The Complex ismainly made up of amphibolites, gneisses, leucoleptite, leptite and layered granite. Petrologicaland geochemical studies show that the protoliths of the Complex are mainly assoctations ofbimodal volcanics and anorogenic granites. The Kuandian amphibolites are depleted in Nb, Ta,P and Ti, and enriched in LILE, e.g. K, Rb and Cs, with pronounced depletion of Sr relative toNd and Pb; La/Nb ratios are higher than 1(1.75 to 5.18). The trace element patterns of theamphibolites are similar to continental flood basalts formed by the Gondwana break-up, suchas those in South Karoo and Tasmania, which shows continental contamination. ε_(Nd) valuesranging from 0.70 to 1.94 of the Kuandian amphibolites and the relationships between Nb/Yband La/Yb suggest that contamination of basaltic magma happened in the mantle, rather thanalong the conduit. Isotope ratios of ~(208)Pb/~(204)Pb, ~(207)Pb/ ~(204)Pb, ~(206)Pb/~(204)Pb, ~(143)Nd/~(144)Ndand ~(87)Sr/~(86)Sr indicate that the magma was derived from a contaminated mantle source likeDMM or a mixture of DMM and EM2. The Kuandian Complex has Dupal anomaly, as is thecase with some continental basalts in the south hemisphere, e.g. in South Karoo and Tasmania.Petrochemical modelling proposes that the Kuandian gneiss, granite, and amphibolite camefrom the same parental magma, being products of strong fractional crystallization. Protoliths ofthe Kuandian Complex were formed in extensional tectonic setting during the transition fromcontinental crust to oceanic crust. The formation of the Kuandian Complex indicates that 2.3or 2.4 Ga ago tectonic evolution of the Sino-Korean craton was different from that of otherwell-studied Precambrian cratons, e.g. the North American shield, European platform andAustralian continent in that strong volcanic eruption resulted in its accretion. Besides, the con-taminated magma source with a Dupal anomaly for the Complex indicates that crust-mantleconvection whose scale was similar to that of the present plate tectonics had occurred at leastbefore the formation of the Kuandian Complex (2.3-2.4 Ga B.P).  相似文献   

14.
Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressivdy toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Kiida-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous rampingrapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-pre  相似文献   

15.
The three I-type plutons of Guantian(GT),Guidong(GD),Shangbao(SB)and the two S-type plutons of Xucun(XC)and Xiuning(XN) as well as their microgranitoid enclaves in southern China have been studied,Restite in the Motianling(MT) metasomatic granite in this area is described in this paper as well,Microgranitoid enclaves in the I-type granitoids may be divied into autoliths and schlierens which have marked differences both in petrography and geochemistry.In the S-type granitoids,schlierens are the major microgranitoid enclaves,but autoliths are rare.The metasomatic granite contains only restite without other enclaves.The microgranitoid enclaves and their host rocks have close ∈Nd(T)values and the same minerals within them are similar in composition.The microgranitoid enclaves,in general,don‘t represent the products of mixing of the syn-plutonic foreign mafic magma and the host acidic magma.They are the records of the evolution of intermediate-acidic magma itself.The formation of autoliths is related to the interdiffusion of different constituents in magma.Schlierens are the products of immiscible fractionation of the magma.  相似文献   

16.
The Khur metallogenic district is located in a volcanic-plutonic belt in the central Lut Block(central eastern Iran). Mineralization occurs in Middle Eocene andesitic tuff and along four main vein systems trending northwest-southeast(Shurk, Mir-e-Khash, Shikasteh Sabz and Ghar-e-Kaftar veins).Microscopic studies reveal that the veins contain bornite, chalcocite, pyrite, tennantite together with minor sphalerite and chalcopyrite as hypogene minerals and chalcocite, digenite, covellite, valleriite,malachite, azurite, atacamite, hematite, and goethite as supergene minerals. The ore bodies are accompanied by narrow but intensely developed wall rock alterations of argillization, carbonatization and silicification. Copper content reaches 6.5, 2.4, 4.2 and 5% in Mir-e-Khash, Shikasteh Sabz, Ghar-eKaftar and Shurk, respectively. Microthermometric measurements of quartz-and calcite-hosted fluid inclusions indicate that the mineralization might be derived from a moderately saline hydrothermal fluid at temperatures between 175-316℃. Calculated δ~(18)O values of water in equilibrium with quartz and calcite for Khur veins suggest that the fluid might have had a magmatic source, but the ~(18)O-depletion was developed through mixing with meteoric water. Copper deposition in Khur veins is believed to have been largely caused by mixing, although wall rock reactions may also have occurred. The Khur veins are classified as volcanic-subvolcanic hydrothermal-related vein deposits.  相似文献   

17.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

18.
The Zhoukoudian stock in Beijing is a concentric zoned complex intrusive body formed by two successive intrusions. Quartz-diorite formed by the first intrusion is scattered sparsely on the margins of the body, while granodiorite resulting from the second intrusion constitutes the main part of the intrusion. It exhibits three distinct petrographic zones macroscopically, and is chemically characterized by enrichment of high-temperature components, such as Mg, Ca, Sc, Ti, Cr, Mn. Fe and Co, on its border and merely slight enrichment of some low-temperature components, such as Na and Si, in its central part. A series of structural features indicate that the deformation of the intrusion and thermo-metamorphic rocks becomes weaker with an increase of distance from the contact, and that the intrusive body is a product of ballooning or inflating diapiric emplacement. Based on calculations of the density, viscosity and yield strength of magma and the reasonable diffusion constants and oxygen isotopic data, the mechanism of the compositional zonation of the major part of the stock is discussed. It is considered that the Soret effect, combined with double-diffusive convection, can explain the compositional zonation of the intrusion. Calculation of the ascent rates of magma shows that successive upwelling of magma got faster and faster with the progress of time.  相似文献   

19.
Petro Gram is an Excel?based magmatic petrology program that generates numerical and graphical models.Petro Gram can model the magmatic processes such as melting,crystallization,assimilation and magma mixing based on the trace element and isotopic data.The program can produce both inverse and forward geochemical models for melting processes(e.g.forward model for batch,fractional and dynamic melting,and inverse model for batch and dynamic melting).However,the program uses a forward modeling approach for magma differentiation processes such as crystallization(EC:Equilibruim Crystallization,FC:Fractional Crystallization,IFC:Imperfect Fractional Crystallization and In-situ Crystallization),assimilation(AFC:Assimilation Fractional Crystallization,Decoupled FC-A:Decoupled Fractional Crystallization and Assimillation,A-IFC:Assimilation and Imperfect Fractional Crystallization)and magma mixing.One of the most important advantages of the program is that the melt composition obtained from any partial melting model can be used as a starting composition of the crystallization,assimilation and magma mixing.In addition,Petro Gram is able to carry out the classification,tectonic setting,multi-element(spider)and isotope correlation diagrams,and basic calculations including Mg^#,Eu/Eu^*,εSrandεNdwidely used in magmatic petrology.  相似文献   

20.
The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was derived from tholeiitic magma series with higher TiO2, REE abundance and Fe3+/Fe2+ ratio ; norite-gabbro was derived from calc-alkali magma series with lower TiO2, Fe3+/Fe2+ ratio and REE abundance and much lower HREE abundance, which suggests that the source of the norite-gabbro magma was deeper and controlled by eclogite facies. Geochemical characteristics of both plutonic rocks are similar to those of island-arc basalts, such as relatively high contents of Ba, Pb and Sr and relatively low contents of Nb, Zr and N j.The Sr, Nd isotopic characteristics of the Lajimiao norite-gabbro complex are similar to those of ophiolites. Its εNd values are constant, about+2; whereas εst values have wide variation from - 6.4 to +31.2 and positively correlate with Na2O, H2O+ and CO2 contents and the Fe3+/Fe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号