首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿   总被引:32,自引:2,他引:30  
无论是碰撞前的B型俯冲,还是碰撞后的A型俯冲,形成斑岩铜矿都必须要有洋壳或上地幔为主的物质参与.因此斑岩铜矿的初始锶值都小于0.708,超过0.708,则意味地壳物质的增多,将形成斑岩钼矿和斑岩钨锡矿.斑岩铜矿带常常与切穿地壳的深断裂带平行共生,并产于其上盘,在该地带往往发育壳幔混合以幔为主的深源花岗质浅成-超浅成小斑岩体.含铜斑岩和埃达克岩可能均为俯冲和交代产物,因而具有相似的特征,但到俯冲末期它们分道扬镳了.文章通过对冈底斯斑岩铜(钼、金和多金属)矿带的分析,来讨论俯冲、碰撞和深断裂带与斑岩铜矿的关系.同时也通过我国中央碰撞造山带仅发育斑岩钼矿,而缺乏斑岩铜矿,从而证明上地幔物质的加入对斑岩铜(金)矿的重要意义.  相似文献   

2.
Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan-Indosinian folding zone. In the north boundary adjoining the North China Block, there are an Early Palaeozoic ophiolitic mixtite belt and the Hefei Mesozoic-Cenozoic faulted basin which overlaps on the suture belt. In the south of Dabie orogen, there is a secondary tectonic unit called Foreland thrust-faulted structural zone which was mainly formed by the intracontinental subductions during Mesozoic era. The study shows that the Dabie Block is a part of mid-late Proterozoic palaeo-island arc at the north margin of Yangtze Block. During Caledonian period, as a submerged uplift at the northen continental margin of Yangtze Block, the Dabie Block collided with the early Palaeozoic palaeo-island arc at the south margin of North China Block, resulting in the convergence of the North and South China Blocks and the disappearance of oceanic crust. Since then,large-scale intracontinental subductions were followed. Dabie Orogenic Belt is the product of overlapping of Yangtze Block, Dabie Block and North China Block under the mechanism of intracontinental subduction. Indosinian period is the period of chief deformation and high pressure dynamic metamorphism for Dabie Block, and Yanshan period is the main orogenic period in which the remelting of crust caused by basement shearing resulted in large scale thermometamorphism. The present tectonic framework of the orogen was finally formed by the rapid uplifting of the Dabieshan mountains and gliding southwards, which result in the developing of thrust belt on south side and the extensional tectonic movement on north side.  相似文献   

3.
Seamounts are an integral part of element recycling in global subduction zones. The published trace element and Pb-Sr-Nd isotope data for basaltic lavas from three key segments (Central Lau Spreading Ridge (CLSR), Eastern Lau Spreading Ridge (ELSR), and Valu Fa Ridge (VFR)) of the Lau back-arc basin were compiled to evaluate the contribution of Louisville seamount materials to their magma genesis. Two geochemical transitions, separating three provinces with distinct geochemical characteristics independent of ridge segmentation, were identified based on abrupt geochemical shifts. The origin of the geochemical transitions was determined to be the result of drastic compositional changes of subduction components added into the mantle source, rather than the transition from Indian to Pacific mid-ocean ridge basalt (MORB) mantle, or due to variable mantle fertilities. The most likely explanation for the drastic shifts in subduction input is the superimposition of Louisville materials on ‘normal’ subduction components consisting predominantly of aqueous fluids liberated from the down-going altered oceanic crust and minor pelagic sediment melts. Quantitative estimation reveals that Louisville materials contributed 0–74% and 21–83% of the Th budget, respectively, to CLSR and VFR lavas, but had no definite contribution to the lavas from the ELSR, which lies farthest away from the subducted Louisville seamount chain (LSC). The spatial association of the subducted LSC with the Louisville-affected segments suggests that the Louisville signature is regionally but not locally available in the Tonga subduction zone. Besides, the preferential melting of subducted old Cretaceous LSC crust instead of the old normal Pacific oceanic crust at similar depths implies that elevated temperature across the subduction interface or seamount erosion and rupture were required to trigger melting. A wider implication of this study, thus, is that seamount subduction may promote efficiency of element recycling in subduction zones.  相似文献   

4.
The Franciscan Complex of California records over 150 million years of continuous E-dipping subduction that terminated with conversion to a dextral transform plate boundary. The Franciscan comprises mélange and coherent units forming a stack of thrust nappes, with significant along-strike variability, and downward-decreasing metamorphic grade and accretion ages. The Franciscan records progressive subduction, accretion, metamorphism, and exhumation, spanning the extended period of subduction, rather than events superimposed on pre-existing stratigraphy. High-pressure (HP) metamorphic rocks lack a thermal overprint, indicating continuity of subduction from subduction initiation at ca. 165 Ma to termination at ca. 25 Ma. Accretionary periods may have alternated with episodes of subduction erosion that removed some previously accreted material, but the complex collectively reflects a net addition of material to the upper plate. Mélanges (serpentinite and siliciclastic matrix) with exotic blocks have sedimentary origins as submarine mass transport deposits, whereas mélanges formed by tectonism comprise disrupted ocean plate stratigraphy and lack exotic blocks. The former are interbedded with and grade into coherent siliciclastic units. Palaeomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow zones of <100 m thickness. Exhumation of Franciscan units, both coherent and mélange, was accommodated by significant extension of the hanging wall and cross-sectional extrusion. The amount of total exhumation, as well as exhumation since subduction termination, needs to be considered when comparing Franciscan architecture to modern and ancient subduction complexes. Equal dextral separation of folded Franciscan nappes and late Cenozoic (post-subduction) units across strands of the (post-subduction) San Andreas fault system shows that the folding of nappes took place prior to subduction termination. Dextral separation of similar clastic sedimentary suites in the Franciscan and the coeval Great Valley Group forearc basin is approximately that of the San Andreas fault system, precluding major syn-subduction strike-slip displacement within the Franciscan.  相似文献   

5.
张修政  董永胜  李才  解超明  王明  邓明荣  张乐 《岩石学报》2014,30(10):2821-2834
羌塘中部晚三叠世低温/高压变质带是目前青藏高原内部延伸规模最大的高压变质带,但大量关键高压变质岩石出露地区地球化学资料匮乏,严重制约了对高压变质带原岩建造以及构造演化的全面认识。本文以羌塘中西部地区尚无地球化学资料的果干加年山榴辉岩和红脊山蓝片岩为研究对象,进行了系统的地球化学以及原岩恢复工作。研究表明,果干加年山榴辉岩呈透镜状产于围岩石榴石多硅白云母片岩和少量大理岩中,其原岩为亚碱性玄武岩,具有较低的稀土总量(∑REE=51.19×10-6~59.43×10-6)和轻稀土亏损的特征[(La/Yb)N=0.59~0.70],不具有Nb、Ta、Ti的亏损,与典型的N-MORB特征一致,暗示其原岩可能来源于亏损的地幔源区,形成于洋中脊环境。红脊山地区基性蓝片岩的原岩为碱性玄武岩-亚碱性玄武岩,具有高的TiO2(2.97%~4.14%)和P2O5(0.29%~0.48%)含量,富集轻稀土元素[(La/Yb)N=6.10~11.6]和高场强元素,地球化学特征类似于OIB。但是这些基性蓝片岩与大量的陆源碎屑岩伴生产出,且具有明显的硅铝质上地壳物质混染的特征,与南羌塘地区二叠纪大陆板内基性岩墙的产出特征以及地壳混染特征一致,可能是其俯冲消减的产物。通过本文研究结果并结合区域内已识别出的E-MORB型洋壳和洋岛/海山物质深俯冲的证据,我们认为羌塘中部晚三叠世高压变质带以洋壳物质深俯冲为主,同时亦保留了部分陆壳物质俯冲的证据,暗示大洋向北俯冲消减结束之后,又牵引至少一部分南羌塘北缘陆壳物质经历了随后的俯冲过程。  相似文献   

6.
Metamorphic soles are tectonic slices welded beneath most large‐scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as forming during the first million years of intraoceanic subduction following heat transfer from the incipient mantle wedge towards the top of the subducting plate. This study reappraises the formation of metamorphic soles through detailed field and petrological work on three key sections from the Semail ophiolite (Oman and United Arab Emirates). Based on thermobarometry and thermodynamic modelling, it is shown that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating as proposed in previous studies. The upper, high‐T metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the down‐going slab to the mylonitic base of the ophiolite. Estimated peak pressure–temperature conditions through the metamorphic sole, from top to bottom, are 850°C and 1 GPa, 725°C and 0.8 GPa and 530°C and 0.5 GPa. These estimates appear constant within each unit but differing between units by 100–200°C and ~0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ridge axis position, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow us to refine the tectonic–petrological model for the genesis of metamorphic soles, formed via the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles result not so much from downward heat transfer (ironing effect) as from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts originate from rheological contrasts between the sole, initially the top of the subducting slab, and the peridotite above as the plate interface progressively cools. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.  相似文献   

7.
北祁连山和柴北缘是典型的早古生代大陆造山带,分别发育有北祁连山大洋型俯冲缝合带和柴北缘大陆型俯冲碰撞带.作为早古生代大洋冷俯冲的典型代表,北祁连山经历了从新元古代-寒武纪大洋扩张、奥陶纪俯冲和闭合及早泥盆世隆升造山的过程.高压变质岩变质年龄为490~440Ma,证明古祁连洋经历了至少50m.y.的俯冲过程.柴北缘超高压变质带是大陆深俯冲的结果,岩石学、地球化学和同位素年代学表明,柴北缘超高压变质带中榴辉岩的原岩分别来自洋壳和陆壳两种环境.高压/超高压变质的蛇绿岩原岩的年龄为517±11Ma,与祁连山蛇绿岩年龄一致.榴辉岩早期的变质年龄为443~473Ma,与祁连山高压变质年龄一致,代表大洋地壳俯冲的时代,而柯石英片麻岩和石榴橄榄岩所限定的超高压变质时代为420~426Ma,代表大陆俯冲的年龄.从大洋俯冲结束到大陆俯冲最大深度的转换时间最少需要20m.y..自420Ma起,俯冲的大洋岩石圈与跟随俯冲的大陆岩石圈断离,大陆地壳开始折返,发生隆升和造山.北祁连山和柴北缘两个不同类型的高压-超高压变质带反映了早古生代从大洋俯冲到大陆俯冲、隆升折返的造山过程.  相似文献   

8.
Eclogite lenses in the Agualada Unit (western Ordenes Complex, Spain) contain the peak mineral assemblage garnet (prograde rim: Alm = 48 mol%, Prp = 30 mol%), omphacite (Jd max = 36 mol%), quartz, rutile and rare zoisite, which equilibrated at T = 700 °C and P > 12–14 kbar. Garnet shows discontinuous growth zoning, with a pyrope-poor intermediate zone (Alm = 51 mol%, Prp = 10 mol%) between a core zone where pyrope is slightly higher (Alm = 46 mol%, Prp = 16 mol%) and areas just inward from the rims where the maximum pyrope contents (Alm = 48 mol%, Prp = 30 mol%) are recorded. In atoll interiors, garnet contains inclusions of a first generation of omphacite (Jd max = 40 mol%). This omphacite is replaced in the matrix by a second generation (Jd max = 36 mol%) with higher Fe/Fe + Mg ratio. The compositions of garnet and omphacite suggest a complex syneclogitic tectonothermal evolution for the Agualada Unit, characterized by: (1) eclogite-facies metamorphism (T = 585 °C, P > 12–13 kbar), followed by (2) cooling during a slight decompression (T = 500 °C, P > 11–12 kbar), and (3) a final increase in P and T to form the garnet rim-matrix omphacite mineral assemblage. The Agualada Unit is part of a subduction complex which affected the Gondwana margin at the beginning of the Variscan cycle. The P-T evolution of the Agualada eclogites is closely related to the structural evolution of the accretionary complex and the whole orogenic wedge. The cooling event recorded by the Agualada eclogites may have resulted from the accretion of a new colder crustal slice under the unit, whereas the final progradation reflects the emplacement of the Agualada Unit directly under the mantle wedge. This evolution fits well with previously presented the retical models, both for the tectonothermal evolution of accretionary complexes and for the dynamic evolution of orogenic wedges. P-T paths such as the one for the Agualada Unit eclogites, probably reflect a prolonged structural evolution. Although evidently rarely preserved, such paths are probably the rule rather than the exception during plate convergence.  相似文献   

9.
1.IntroductionFromexperimefltalphaseequilibrium,stableisotOPe,andthermo-barometricstudies,ProgradebineschistdineralparageneseshavebeenproducedexclusivelyatrelativelyhighPadratios(DeRoever,1956;Miyashiro,1961;DobretsovandSobolev,1984;Emst,1973,1988;Maruyamaetal.,1996).InthelastthreedeCades,withtheadvanceofplatetectonics,manygeologistssuggestedthatblueschists,representinghigh-Pressurelow-tCmperamre~rphism,areformedbysubductionofoceanicplate(Emst,1973).Blueschistshavealsobeenregardedasoneof…  相似文献   

10.
Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan-Indosinian folding zone. In the north boundary adjoining the North China Block, there are an Early Palaeozoic ophiolitic mixtite belt and the Hefei Mesozoic-Cenozoic faulted basin which overlaps on the suture belt. In the south of Dabie orogen, there is a secondary tectonic unit called Foreland thrust-faulted structural zone which was mainly formed by the intracontinental subductions during Mesozoic era. The study shows that the Dabie Block is a part of mid-late Proterozoic palaeo-island arc at the north margin of Yangtze Block. During Caledonian period, as a submerged uplift at the northen continental margin of Yangtze Block, the Dabie Block collided with the early Palaeozoic palaeo-island arc at the south margin of North China Block, resulting in the convergence of the North and South China Blocks and the disappearance of oceanic crust. Since then,large-scale intracontinental subductions were followed. Dabie Orogenic Belt is the product of overlapping of Yangtze Block, Dabie Block and North China Block under the mechanism of intracontinental subduction. Indosinian period is the period of chief deformation and high pressure dynamic metamorphism for Dabie Block, and Yanshan period is the main orogenic period in which the remelting of crust caused by basement shearing resulted in large scale thermometamorphism. The present tectonic framework of the orogen was finally formed by the rapid uplifting of the Dabieshan mountains and gliding southwards, which result in the developing of thrust belt on south side and the extensional tectonic movement on north side.  相似文献   

11.
变质作用、板块构造及超级大陆旋回   总被引:15,自引:2,他引:13  
麻粒岩相超高温变质作用(GUHTM)主要发育于新太古代至寒武纪岩石中;推测在深部较年轻的,特别是新生代造山带岩石中也会有GUHTM存在。岩石中最初出现GUHTM记录意味着产生瞬时极高热流处的地球动力学发生了改变。许多GUHTM带可能发育于类似现代大陆弧后的构造背景中。在较热的地球上,超大陆及其裂解形成的循环组合,尤其是经岩石圈减薄的洋盆卷入到其外翻过程中可能产生比现代太平洋边缘更热的大陆弧后。中温榴辉岩 高压麻粒岩相变质作用(EHPGM)也是最先发现于新太古代岩石记录中,并发育于从元古宙至古生代岩石中。EHPGM带是对GUHTM带的补充,并经常认为是记录了从俯冲至碰撞造山作用的过程。在元古宙岩石记录中的蓝片岩明显记录了与现代俯冲作用相关的低热流梯度。以发育柯石英(±硬柱石)或金刚石为特征的硬柱石蓝片岩和榴辉岩(高压变质作用,HPM)及超高压变质岩(UHPM)主要是在显生宙形成。HPMUHPM记录了显生宙俯冲碰撞造山带早期碰撞过程中的低热流梯度及陆壳的深俯冲作用。尽管与直觉不同,在超级大陆聚敛期(Wilson旋回洋盆打开和关闭)的大陆地块增生过程,许多HPMUHPM带看来确实是通过小洋盆关闭而发育起来的,反映双重热体制的双重变质带仅发育于新太古代以来的岩石记录中。双重热体制是现代板块构造的特点,而双重变质作用则是板块构造在岩石记录中的特征性标志。尽管构造样式很可能不同,新太古代以来GUHTM和EHPGM带的发育证明“元古宙板块构造体制”的开始。以冷俯冲和大陆地壳深俯冲至地幔,以及其中的部分又从深达300 km处发生折返为标志,“元古宙板块构造体制”在新元古代进化为“现代板块构造体制”,这个转变可由岩石中的HPMUHPM证明。记录这种极端条件的变质带年龄是不一致的,而变质作用发生时间与各大陆岩石圈聚合到超级克拉通(如Superia/Sclavia)或超级大陆(如Nuna (Columbia), Rodinia, Gondwana, 和Pangea)的时间却是一致的。  相似文献   

12.
西藏东巧北尕苍见岛弧的厘定及地质意义   总被引:8,自引:0,他引:8       下载免费PDF全文
在班公错—怒江小洋盆内晚侏罗世存在向南的俯冲已被许多学者所证实,近期在班—怒带中部的东巧蛇绿岩带北侧发现一套晚侏罗世火山岩——尕苍见(组)火山岩,该套火山岩以内部变形微弱而明显有别于东巧蛇绿岩带,其地球化学特点反映具有岛弧性质,并具有初期为拉斑玄武质-钙碱性岩浆喷发,尔后以钙碱性火山活动为主,至晚期岛弧演化成熟,发生岛弧橄榄安粗质火山喷发活动,并伴有富Nb岛弧玄武岩产出。证明在班怒小洋盆内晚期也曾存在向北的俯冲作用。这一发现对完整重溯班—怒带构造演化和构建青藏高原大地构造格局具有重要意义。  相似文献   

13.
利用地球动力学数值模拟方法探讨了洋-陆汇聚时,大洋岩石圈的绝对俯冲速率和上覆大陆岩石圈的向洋绝对逆冲速率对俯冲模式的影响,尤其是上覆大陆的向洋绝对逆冲速率与平板俯冲之间的关系。模型结果显示,对于年龄为40 Ma的含正常洋壳厚度的大洋岩石圈,在初始俯冲角度为现今洋–陆俯冲平均倾角的极小值(19°)条件下,低速大洋俯冲(绝对俯冲速率≤3 cm/a)且上覆大陆岩石圈向洋绝对逆冲速率≥1 cm/a时,具备形成平板俯冲的条件。当中–高速大洋俯冲(绝对俯冲速度3 cm/a)时,在上覆大陆的绝对逆冲速率不小于俯冲速率时可以形成平板俯冲。当增加初始俯冲角度到平均倾角的极大值(36°)时,仅在低速大洋俯冲(绝对俯冲速率≤3 cm/a)且绝对逆冲速率达到10 cm/a时(自然界中基本不存在),才有可能出现平板俯冲,其他情况均表现为陡俯冲。我们的模拟结果表明:(1)较高的大洋岩石圈绝对俯冲速率更容易克服板间耦合作用力而有利于陡俯冲形成;(2)较高的上覆大陆绝对逆冲速率更有利于俯冲板片弯曲而趋向于平板俯冲形成;(3)上覆大陆朝向海沟的逆冲速率会在俯冲板片下方产生水平向陆的地幔流,绝对逆冲速率越大该地幔流越强烈,导致作用于板片下表面的水平剪切分量越大而有利于板片弯折和平板俯冲发生;(4)初始俯冲角度的增加对平板俯冲的形成起到强烈抑制作用。这些能被现今平板俯冲,如具相似洋–陆汇聚速率条件的南美洲西海岸平板俯冲实例所验证。  相似文献   

14.
本文分析了龙门山陆内俯冲带两侧岩石圈的强度结构特征及在侧向力作用下所发生的变形过程。盆地岩石圈中高强度层厚而紧凑,显示了较好的整体高强度性;造山带岩石圈上地壳具高强度,其下为低强度层。在侧向挤压力的作用下,变形主要发生于造山带一侧,最可能的变形方式是其脆性上地壳出现倾向后陆的逆冲断层,盆地岩石圈沿此断层俯冲,挤压其下部的低强度层,使之发生韧性增厚变形。  相似文献   

15.
Abstract

The Shyok suture zone separates the Ladakh terrane to the SW from the Karakoram terrane to the NE. Six tectonic units have been distinguished. From south to north these are; 1. Saltoro formation; 2. Shyok volcanites; 3. Saltoro molasse; 4. Ophiolitic melange; 5. Tirit granitoids; 6. Karakoram terrane including the Karakoram batholith. Albian—Aptian Orbitolina-bearing lime-stones and turbidites of the Saltoro formation tectonically overlie high-Mg-tholeiites similar to the tectonically overlying Shyok volcanites. The high-Mg tholeiitic basalts and calcalkaline andesites of the Shyok volcanites show an active margin signature. The Saltoro molasse is an apron-like, moderately folded association of redgreen shales and sandstones that are interbedded with ~ 50 m porphyritic andesite. Desiccation cracks and rain-drop imprints indicate deposition in a subaerial fluvial environment. Rudist fragments from a polygenic conglomerate of the Saltoro molasse document a post-Middle Cretaceous age. The calcalkaline andesites of the Shyok volcanites are intruded by the Tirit granitoids, which are located immediately south of the Ophiolitic melange and belong to a weakly deformed trondhjemite-tonalite-granodiorite-granite suite. These granitoids are subalkaline, I-type and were emplaced in a volcanic arc setting. The subalkaline to calcalkaline granitoids of the Karakoram batholith are I-and S-type granitoid. The I-type granitoids represent a typical calcalkaline magmatism of a subduction zone environment whereas the S-type granitoids are crustderived, anatectic peraluminous granites. New data suggest that the volcano-plutonic and sedimentary successions of the Shyok suture zone exposed in northern Ladakh are equivalent to the successions exposed along the Northern suture in Kohistan. It is likely that the o istan and Ladakh blocks evolved as one single tectonic domain uring the Cretaceous-Palaeogene. Subsequently, collision, suturing and accretion of the Indian plate along the Indus suture (50–60 Ma) together with tectonic activity along the Nanga Parbataramosh divided Kohistan and Ladakh into two arealy distinct magmatic arc terranes. The activity and a dextral offset along the Karakoram fault (Holocene-Recent) disrupted the original tectonic relationships. © 1999 Éditions scientifiques et médicales Elsevier SAS  相似文献   

16.
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga–Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P – T conditions ( c . 700 °C and 6.5–8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P – T  conditions (450–620 °C and 4.7–7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P – T  gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock–metamorphic mineral pairs yields similar ages of c . 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock ( c . 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570–550 Ma may reflect thermal events during late orogenic granite magmatism.  相似文献   

17.
位于塔里木-卡拉库姆板块与伊犁-哈萨克斯坦板块之间的南天山造山带是最具代表性的造山带之一,其中发育一条不完整的蛇绿岩带——南天山南缘库勒湖-科克铁克达坂蛇绿岩带,暗示古缝合线的存在。该蛇绿岩带北面的开都河水电站泥盆纪地层中发育一套中酸性火山岩(包括熔结凝灰岩、含晶屑酸性玻璃质熔岩和安山岩等),属于碱性-钙碱性系列,A/CNK值在0.82~1.31之间;该套岩石整体REE含量较高,轻重稀土元素分异显著,轻稀土元素相对富集,重稀土元素亏损,并具强烈的Eu负异常。对熔结凝灰岩中岩浆锆石进行LA-ICP-MS U-Pb定年,获得其结晶年龄为393.1±3.4 Ma,与中泥盆统(D2)萨阿尔明组一致。岩石地球化学研究表明,安山岩可能来自于玄武岩分离结晶;熔结凝灰岩、含晶屑酸性玻璃质熔岩来自于上地壳部分熔融。推测其形成机制是:库勒洋盆在中泥盆世向北俯冲消减过程中释放出流体,导致地幔楔发生部分熔融并形成玄武质岩浆,部分玄武质岩浆结晶分异形成安山岩,随着俯冲持续和地壳不断加厚,玄武质岩浆对上部地壳加热使得其发生部分熔融形成酸性母岩浆,并最终喷发至地表形成熔结凝灰岩和含晶屑酸性玻璃质熔岩。  相似文献   

18.
北祁连走廊南山加里东俯冲杂岩增生地体及其动力学   总被引:105,自引:9,他引:105  
北祁连走廊南山加里东火山岛弧带前缘为弧前俯冲杂岩增生地体。它由多重的增生火山岛弧、复理石增生楔、高压变质滑脱带及蛇绿岩残片组成,为早古生代古祁连洋壳自SW往NE俯冲于阿拉善地块之下的结果。俯冲过程的高压变质阶段经历了中温高压的初期、降温增压的主期而进入降压增温的驰后期。提出了450-500Ma期间,中祁连地块向北俯冲、阿拉善地块向南增生的海沟后退的俯冲动力学模式。  相似文献   

19.
准噶尔板块东南缘沙尔德兰地区A型花岗岩构造环境研究   总被引:3,自引:2,他引:1  
研究区属于准噶尔板块东南缘,即传统意义上的北天山东段,分布有两类A型花岗岩,一种是钾长花岗岩,另一种是正长花岗斑岩。其中阔台克力克能厄肯钾长花岗岩产于大南湖岛弧带,白坡南钾长花岗岩和正长花岗斑岩均产于觉罗塔格岛弧带。白坡南与阔台克力克能厄肯钾长花岗岩同为弱过铝质,岩石化学属高钾钙碱性系列,稀土元素配分曲线为轻稀土富集型,具有明显的负Eu异常; 富集大离子亲石元素,显著亏损Sr、Nb、P2O5、TiO2,具有火山弧花岗岩的地球化学特征。正长花岗斑岩从准铝质过渡到弱过铝质,岩石化学从高钾钙碱性系列过渡到钾玄岩系列,轻重稀土元素分馏不明显,具有显著的负Eu异常; 富集高场强元素,亏损Ba、Sr、P2O5及TiO2,具有板内花岗岩的地球化学特征。这些钾长花岗岩和正长花岗斑岩均属于A2型花岗岩。根据前人在北疆地区获取的研究成果,可将该区域岛弧环境结束与后碰撞岩石圈伸展环境开始的分界时限厘定为320Ma。根据我们的研究,白坡南钾长花岗岩体的锆石U-Pb谐和年龄为338.3±4.3Ma,正长花岗斑岩的锆石U-Pb谐和年龄为278±2Ma。年代学与岩石地球化学研究表明,白坡南钾长花岗岩形成于B型俯冲阶段的岛弧环境,而正长花岗斑岩形成于后碰撞岩石圈伸展环境。由此证明,A型花岗岩不仅产于非造山和后碰撞伸展环境,还可以产于岛弧环境。  相似文献   

20.
Abstract The Western Baja terrane (WBt) of west-central Baja California is an uplifted subduction complex that is divided into smaller 'subterranes'on the basis of bounding faults and petrological differences. Each subterrane contains coherent Early Jurassic to Early Cretaceous sedimentary and mafic volcanic rocks (not melange) that have been metamorphosed under blueschist facies conditions. Key phases in metabasites and metaturbidites include jadeitic to acmitic clinopyroxene, sodic amphibole, lawsonite, aragonite, chlorite, titanite and white mica. Pressure indicators include the jadeite content of clinopyroxene and the presence of aragonite. Temperature indicators include the presence of lawsonite, the absence of greenschist facies minerals and results from vitrinite reflectance studies. Conditions at the peak of metamorphism were >8 kbar, 225–325°C for subterrane 1, 7–8 kbar, 170–220°C for subterrane 2, and 5–6 kbar, 175–200°C for subterrane 3; these correspond to cold geothermal gradients (6–9/km). Vein assemblages that include aegerine–jadeite and aegerine, albite, aragonite, lawsonite and sodic amphibole indicate uplift during continued cold conditions, probably during steady-state subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号