首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

2.
The effects of previous deviatoric strain histories on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, strain histories are generated by isotropic consolidation followed by standard drained triaxial preshear or presheared cycle, either in compression or in extension, up to a desired value of axial strain or mobilized stress ratio. Deviatoric strain histories are achieved by having nearly the same void ratio at the beginning of the undrained shearing for all tested samples. Subsequent undrained behaviour in triaxial compression and extension is analyzed in detail. Previous deviatoric strain histories can progressively transform the compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand, while being loose. Experiments show a common response induced by recent strain histories in terms of effective stress paths, independently of the axial strain attained during the drained presheared cycle, a unique initial gradient of the effective stress paths, a progressive appearance of dilatancy, an evolution the undrained behaviour and a systematic partial static liquefaction associated with softer behaviour when sheared in the opposite direction of the initial presheared direction. This paper offers a comprehensive understanding of the mechanisms of a specialized induced anisotropy created by simple linear stress paths in the classical triaxial plane.  相似文献   

3.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

5.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. It is the purpose of these two companion papers to provide such database collected for a fine sand. Part II concentrates on the undrained triaxial tests with strain cycles, where a large range of strain amplitudes has been studied. Furthermore, oedometric and isotropic compression tests as well as drained triaxial tests with un- and reloading cycles are discussed. A combined monotonic and cyclic loading has been also studied in undrained triaxial tests. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

6.
Stress history is recognised to play a major role in determining stress–strain behaviour of soil in undrained shearing. Most experimental studies on the effects of stress history on undrained behaviour are mainly limited to clean sand. In this paper, an experimental study carried out to investigate the effect of stress history on the undrained behaviour of loose sand with a small amount of fines is presented. Four series of triaxial compression tests, with different types of drained stress histories to near-failure prior to commencement of undrained shearing, were conducted. The experimental results indicate that drained pre-shearing to near-failure affects significantly the undrained behaviour of loose sand. In general, the drained pre-shearing improves the subsequent undrained behaviour of loose sand to the extent that liquefaction may not occur. It is shown that the effect of drained pre-shearing cannot be explained by the reduction in void ratio induced by drained pre-shearing. However, for specimens subjected to drained pre-shearing, $ p_{{{\text{d}}0}}^{\prime } $ / $ p_{{{\text{u}}0}}^{\prime } $ can be used as a parameter for analysing the effects of preloading history. It is also shown that for different preloading histories that brought the same change in void ratio or state parameter, drained pre-shearing to near-failure is the most effective, whereas pre-compression alone is the least effective in improving subsequent undrained behaviour of loose sand.  相似文献   

7.
In this paper, undrained triaxial compression tests were performed on specimens obtained in Oued Rass sand (Chlef, Algeria). The objective of this study is to investigate the effects of specimen deposition methods, the initial density, and the confining pressure on the undrained behavior of this sand. The test results show that the initial confining pressure and the relative density affected, in a significant manner, the resistance to liquefaction. However, it increases with confining pressure and relative density. The results also show that the specimens prepared by dry deposition method have a greater resistance to liquefaction than those prepared by moist tamping. A nondestructive comparative analysis of the deposits by X-ray microtomography carried out at the granular scale made it possible to characterize more precisely the difference of the obtained structures for the two deposition modes.  相似文献   

8.
利用河海大学与日本圆井株式会社共同研制的一种新型的多功能静动三轴仪进行了不排水循环扭剪试验。通过对空心圆柱体试样的动力扭剪不排水试验研究了相同相对密度在不同固结围压下的动力不排水响应。试验初步研究了通过用初始有效平均正应力归一化的有效应力路径,归一化有效应力路径有很好的一致性。如果保持相同的剪应力比,由初始有效平均正应力归一化的有效应力路径不受初始有效平均正应力的影响。  相似文献   

9.
常剪应力路径下含气砂土的三轴试验   总被引:1,自引:0,他引:1  
孔亮  刘文卓  袁庆盟  董彤 《岩土力学》2019,40(9):3319-3326
天然气水合物完全分解时,产生的气体使得能源土孔隙压力急速增加,有效应力减小,进而引起土体液化破坏。此时深海能源土斜坡的应力状态与静力液化失稳过程可简化为含气土在常剪应力排水(或不排水)应力路径下的破坏问题。以此为背景,提出了制备含气砂土试样的改进充气管法,并开展了含气砂土的常剪应力路径三轴试验。22组试验结果表明:同一孔隙比的含气密砂在不同围压与常剪应力下具有相同的失稳线;含气砂土试样失稳时的应力比和体变均随初始相对密实度的增大而增大;含气密砂在常剪应力路径下饱和度对失稳特征影响的规律性在排水与不排水条件下均不明显,但在不排水条件下含气砂土的孔压(或体变)对变形的敏感性降低;含气密砂在常剪应力路径到达失稳点之后,排水条件下是瞬变的液化鼓胀破坏,不排水条件下是渐变的剪切破坏。  相似文献   

10.
In this paper, numerical simulation of 3-dimensional assemblies of 1000 polydisperse sphere particles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of granular materials. Numerical simulations of cyclic triaxial shear tests under undrained conditions are performed at different confining pressures under constant strain amplitude. Results obtained in these numerical simulations indicate that with increase in confining pressure there is an increase in liquefaction resistance.  相似文献   

11.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

12.
Recent earthquake case histories have revealed the liquefaction of mixtures of sand and fine particles during earthquakes. Different from earlier studies which placed an emphasis on characterisation of liquefaction in terms of the induced shear stress required to cause liquefaction, this study adopted a strain approach because excess pore-water pressure generation is controlled mainly by the level of induced shear strains. The current study includes the results of a set of laboratory tests carried out on sand specimens with the same relative densities and variation in the plastic fines (kaolinite or bentonite) contents ranging from 0 to either 30 % and consolidated at mean confining pressure of 100, 200 and 300 kPa using static triaxial test apparatus, in order to study the influence of fine content and other parameters on the undrained shear strength and liquefaction potential of clayey sand specimens; also, pore-water pressures in the specimens are discussed. Results of tests show that the peak strength decreases as the fines (kaolinite or bentonite) content increases up to a threshold content of fines (FCth) after which, increases in plastic fine content lead to improve the peak shear strength of specimens, and also the ultimate steady-state strength has been improved due to the increased in plastic fines content. Also, pore pressure build-up in clayey sands is generally slower than that observed in pure sand.  相似文献   

13.
A number of cyclic triaxial tests were carried out on mine tailings and natural sediment samples under undrained conditions to investigate their resistance to cyclic loading. The tests were performed on more than 100 samples with a cyclic shear stress ratio ranging from 0.10 to 0.40 under varying void ratio and the same confining pressure. It was observed that the axial strain and excess pore water pressure increased with the number of loading cycles while the effective stress decreased with increasing number of loading cycles. The liquefaction resistance of the tailings was also observed to be higher than that of natural soils with similar particle size distribution, void ratio and plasticity index. It was observed that the influence of specific gravity on the cyclic strength of mine tailings is significant. The results showed that the cyclic resistance of the tailings was not strongly influenced by plasticity index for low plasticity tailings. A boundary relationship between void ratio and normalized cyclic resistance ratio was established based on the results.  相似文献   

14.
Some authors use the concept of critical void ratio of sands to describe sand behavior under dynamic load. This paper presents a new procedure of experimental determination of the critical void ratio of sands under consolidated undrained triaxial compression. At present, there is no technical possibility for determining the critical void ratio of sand under dynamic loads, particularly in shear zones. The mechanism of dynamic load is such that both pore pressure and effective stresses (indirect indicators of the change in the void ratio of sand under undrained conditions) change several times, even during one cycle. It is established that, because of dynamic loading, saturated sands of any density tend to the state of zero dynamic dilatancy when shear zones of constant thickness form in sands, where further strain accumulation is localized. The investigation into the state of zero dynamic dilatancy is fundamentally important for the estimation of the dynamic stability of sands.  相似文献   

15.
Time-Dependent Behaviour and Static Liquefaction Phenomenon of Sand   总被引:1,自引:0,他引:1  
Recent laboratory and field experiments have confirmed that sand does indeed exhibit time-dependent behaviour. Based on these findings, it was considered necessary to revisit some of the published experimental results on the static liquefaction phenomenon of loose anisotropic Hostun RF sand. Time-dependency might have had a significant influence on the observed undrained response of anisotropic consolidated sand specimens. Specific triaxial tests have been performed and a qualitative analysis is presented in this paper. It is shown that, despite the differences on the anisotropic consolidation path employed, different specimens show qualitatively identical undrained responses if creep periods are performed at identical test stages or if the anisotropic consolidation takes place very slowly. With time, the undrained stiffness and strength are considerably improved and this may explain why the static liquefaction phenomenon is not as common in practice as could be predicted based on an instability line concept. Whereas the original instability line concept was developed independently of time-dependency, in field situations, the liquefaction resistance of the sand can increase with time.  相似文献   

16.
Two strong earthquakes occurred in the region of Chlef (north western part of Algeria) during the last century. From the geological context, there were several great masses of sandy soil ejections on to the ground surface level and severe damages to civil and hydraulic structures. These damages were due to the soil liquefaction phenomenon. The objective of this laboratory investigation is to study the effect of low plastic fines and gradation characteristics on the undrained shear strength (liquefaction resistance) response of sand-silt mixture samples. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with different fines content ranging from 0 to 50?% at two initial relative densities (Dr?=?20 and 91?%). The initial confining pressure was kept at 100?kPa. The evaluation of the data indicates that the undrained shear strength at the peak (qpeak) can be correlated to the undrained residual strength (Sus), the excess pore pressure (Δu), the fines content (Fc) and the intergranular void ratio (es). The test results indicate also that the undrained shear strength at the peak decreases with the increment of the coefficient of uniformity and fines content as well as with the decrement of the mean grain size in the range of 0–50?% fines content for both relative densities (Dr?=?20 and 91?%).  相似文献   

17.
Exploring the undrained induced anisotropy of Hostun RF loose sand   总被引:3,自引:3,他引:0  
The effects of recent history on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, recent histories are generated by isotropic consolidation followed by standard drained triaxial preshear in compression, up to a desired value of axial strain or mobilized stress ratio, and unloading to an initial stress ratio. Subsequent undrained behaviour in triaxial compression is analysed in detail. This paper contributes to the traits explaining the progressive transformation of a compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand by previous history, while remaining in the same state of loose density. Experiments show a large pseudo-elastic domain induced by recent history in terms of effective stress paths, function of the initially mobilized stress ratio level, a unique initial gradient of the effective stress paths depending on the stress ratio at the beginning of the undrained shearing, a progressive appearance of dilatancy and a surprising evolution the undrained behaviour of loose sand. Experimental results evidence the important role of the recent deviatoric strain history, from any initial isotropic or anisotropic stress state. This paper also offers a comprehensive understanding of the history mechanisms created by simple linear stress paths with fixed direction in the classical triaxial plane.  相似文献   

18.
A constitutive model with rotation hardening was generalized from the triaxial compression state to a general stress state. With the generalized model, numerical simulations of cyclic and monotonic undrained triaxial tests were conducted to reproduce the phenomenon of continuous, orderly and rapid changes in anisotropy during liquefaction. The simulated results demonstrated that when sand enters the liquefaction stage, the yield surface in the stress space rotates quickly, causing continuous and rapid changes in anisotropy. Through comparison of the simulated and experimental results, the generalized constitutive model was shown to be able to capture the fundamental behaviors of sand demonstrated by the experimental data, and the rotational hardening rule adopted in the generalized model was proven suitable for describing the continuous, orderly and rapid changes in anisotropy that occur during liquefaction.  相似文献   

19.
利用土工静力-动力液压-三轴扭转多功能剪切仪,针对相对密度为30 %的福建标准砂,进行了复杂初始固结条件下应力路径变化的应力控制式单调排水与不排水剪切试验。控制试验过程的平均主应力保持不变,变化中主应力系数和主应力方向,分别探讨在不同排水条件下中主应力系数和主应力方向对饱和砂土剪切特性的影响。通过对比表明:与排水条件无关,中主应力系数对归一化的应力-应变关系具有影响,但对体变或孔压的影响并不明显。初始条件相同,偏应力比随中主应力系数的增大而降低。主应力方向的影响同样显著,排水试验的主应力方向角不同时应力-应变关系所表现出的变化规律取决于水平面与竖直面上受到的剪应力作用。不排水试验的峰值有效偏应力比随着主应力方向角的增大而减小。  相似文献   

20.
The effects of initial state of the samples and the overconsolidation ratio (OCR) on the behavior of Chlef sand were studied in this article. For this purpose, the results of two series of undrained monotonic triaxial compression tests on medium dense sand are presented. In the first test series, the influence of the specimen's fabric and confining pressure has been studied. The tests were conducted at initial confining pressure of 50, 100, and 200 kPa. Two methods of sample preparation, which included the dry funnel pluviation and the wet deposition, were utilized. All the samples were subjected to a monotonic loading after consolidation phase. The results of the tests demonstrate that an increase in initial confining pressure leads to an increase in the resistance to liquefaction. The results also show that the samples prepared with the dry funnel pluviation method exhibit a greater resistance to liquefaction than those prepared with the wet deposition method. In the second series of tests, the overconsolidation influence on the resistance to the sand liquefaction has been realized on samples at an effective stress of 100 kPa for OCR varying between 1 and 8. The tests show that the increase of OCR improves the stiffness of sand and accelerates the appearance of dilatancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号