首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
桐柏秦岭岩群的两类变质作用   总被引:1,自引:1,他引:0  
任留东  李崇  王彦斌  李淼  蔡春红 《岩石学报》2016,32(6):1596-1610
本文重点对河南桐柏地区的秦岭岩群进行了观察与研究,根据野外地质、岩相关系及同位素测年资料,提出该区秦岭岩群具有明显不同的两类变质作用,一是较早期的高温麻粒岩相变质作用,以包体或长透镜群、甚至巨型条块状局限于中部郭庄组的花岗质片麻岩之中。根据伟晶岩、片麻岩及麻粒岩锆石年龄的综合限定,该变质作用的时间可能为~498Ma,多数人主张的445~430Ma的麻粒岩相变质年龄实际上是早期锆石被后期岩浆或变质事件引起的同位素体系重启年龄。另一种是相对晚期的角闪岩相变质作用,变质程度以角闪岩相为主,局部达高角闪岩相,没有任何早期高温或高压变质的残留迹象,形成秦岭岩群中主导类型的变质作用。同样,采用伟晶岩及有关片麻岩和麻粒岩中锆石测年限定,角闪岩相变质时间可能为~472Ma。高温麻粒岩的产出具有其特殊机制,大量的花岗质岩浆侵位过程中把地壳深部的高温麻粒岩裹挟上升至浅部层次,随后一起遭受区域上的角闪岩相变质作用。  相似文献   

2.
麻山杂岩的两种变质作用及其与花岗岩的关系   总被引:2,自引:1,他引:1  
在黑龙江佳木斯地块麻山杂岩中识别出麻山杂岩中具有两种类型的变质作用:早期局部的麻粒岩相变质作用(M1)和伴随的无水深熔作用(>530Ma),即狭义的麻山群高级变质作用,变质岩多以残留块体形式散布于后期混合岩或花岗岩之中;麻粒岩相变质之后由于广泛的岩浆活动,造成了强烈的混合岩化作用(500Ma)和相应大范围的晚期角闪岩相变质作用(M2)。角闪岩相和麻粒岩相变质并非带状递进变化,而是在时空上均有差异的两种变质作用。混合岩化过程中的富水流体对早期"干"岩石进行了明显的退变质改造,从而造成高级变质岩变质结构的复杂性。此外,含水花岗岩的侵位对先期麻粒岩相变质成因锆石同位素体系有重置作用,使得早期的变质年龄难以测定。麻山杂岩的变质-花岗岩关系与东南极普里兹带有类似之处,在变形-变质之后迅速发生了构造体系的转换,出现了新的岩浆活动,只是花岗岩发育强度有所不同,反映了两地构造演化细节上的差异。西伯利亚古陆南缘及中亚造山带内部的一些微陆块发生了与冈瓦纳陆块内泛非事件类似的构造-热-岩浆事件,因此,中亚造山带内部的佳木斯地块及其他类似的微陆块与冈瓦纳古陆边缘活动带具有相似的构造性质。  相似文献   

3.
北秦岭造山带的早古生代多期变质作用   总被引:15,自引:13,他引:2  
张建新  于胜尧  孟繁聪 《岩石学报》2011,27(4):1179-1190
北秦岭造山带的秦岭岩群以高级变质岩石为特征,主要包括少量榴辉岩、高压麻粒岩和区域上广泛分布的麻粒岩-角闪岩相变质岩石。年代学研究显示秦岭岩群中不同岩石记录了多期变质作用。已有的定年资料给出北秦岭官坡地区的榴辉岩的年龄为500Ma左右,代表榴辉岩相的变质时代。结合岩相学资料,对两个高压麻粒岩样品的SHRIMP和LA-ICPMS U-Pb测定分别获得504±7Ma 和506±3Ma的年龄,应代表高压麻粒岩相变质时代。这表明高压麻粒岩和相邻的榴辉岩有相近的变质时代,但形成在造山带中不同的构热造环境中。西峡地区的角闪二辉麻粒岩的U-Pb定年给出两组早古生代年龄,一组为440±2Ma,可能代表了中低压麻粒岩相的变质时代,另一组为426±1Ma,应代表区域角闪岩相的变质时代。桐柏山北部的石榴二辉麻粒岩的U-Pb定年数据给出436±1Ma的年龄,为中压麻粒岩相的变质时代。这些资料表明北秦岭造山带经历了早奥陶世的俯冲和地壳增厚作用,并在晚志留世遭受了广泛的巴罗式区域变质作用。  相似文献   

4.
《Precambrian Research》2001,105(2-4):143-164
New fieldwork, map interpretation, petrography and single zircon U–Pb geochronology has allowed the identification of different crustal blocks in the Paamiut region, in the southern portion of the West Greenland Archaean Craton. Changes of metamorphic grade from only amphibolite facies to granulite facies (some subsequently retrogressed) corresponds with zones of Archaean high strain ductile deformation ± mylonites. U–Pb zircon dates are presented for the TTG (tonalite, trondhjemite, granodiorite) protoliths from each block in the Paamiut region, and the southern portion of the previously identified Tasiusarsuaq terrane lying to the north. The southern part of the Tasiusarsuaq terrane contains 2880–2860 Ma TTG rocks and underwent amphibolite facies metamorphism. Structurally underneath the Tasiusarsuaq terrane to the south is the Sioraq block containing 2870–2830 Ma TTG rocks partly retrogressed from granulite facies. Structurally underneath and to the south is the Paamiut block, dominated by 2850–2770 Ma granodioritic rocks that have only undergone amphibolite facies metamorphism. Also structurally overlying the Paamiut block, but cropping out separately from the Sioraq block, is the Neria block. This appears to be dominated by 2940–2920 Ma gneisses that have been totally retrogressed from granulite facies and strongly deformed. In the southernmost part of the region the Neria block overlies the greenschist to lowermost amphibolite facies Sermiligaarsuk block that contains the ⩾2945 Ma Tartoq Group. Rocks from all the blocks record ancient loss of Pb from zircons and some new zircon growth at 2820 Ma, interpreted to indicate a high grade metamorphic event at that time, including granulite facies metamorphism in the Sioraq and Neria blocks. The blocks of different metamorphic grade are interpreted to have moved to their current positions after the 2820 Ma metamorphism, explaining the change in metamorphic history across some mylonites and ductile shear zones which deform and retrogress granulite facies textures. The juxtaposed blocks and their contacts were subsequently folded under amphibolite facies conditions. The contacts are cut by undeformed Palaeoproterozoic dolerite dykes which post-date amphibolite facies metamorphism. These results, together with previously published data from the Godthåbsfjord region (north of Paamiut) shows that the North Atlantic Craton in West Greenland from Ivittuut in the south to Maniitsoq in the north (∼550 km) consists of a mosaic of ductile fault-bounded packages that attained their present relative positions in the late Archaean.  相似文献   

5.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

6.
中国东北地区佳木斯地块南部麻山杂岩正、副片麻岩 7个样品的锆石 SHRIMP年龄数据首次明确地表明 ,东北地区存在 500 Ma的晚泛非期高级变质作用事件。峰期麻粒岩相变质导致柳毛地区 (502± 10)Ma (2σ )深熔花岗岩的形成。正、副片麻岩变质年龄的一致性表明它们已在变质前发生了构造叠置。西麻山副片麻岩中含有在后期麻粒岩相变质过程中未重结晶的碎屑锆石,由此形成从协和一致的 550 Ma到弱不一致 1 900 Ma的较大 207Pb/206Pb年龄变化范围,表明其原岩具有从新元古代到中元古代-古元古代的年龄。柳毛地区变质的片麻状闪长岩中所含的古老锆石的 207Pb/206Pb年龄为 546~ 1 460 Ma表明,该闪长岩大约在 1 400 Ma就位,并受到 500 Ma变质事件的影响,从而说明柳毛地区存在中元古代基底。然而,与以前的认识相反,麻山杂岩不存在具有太古宙基底的同位素证据。晚泛非期变质事件年龄的确定对重塑晚前寒武纪-显生宙早期麻山杂岩和佳木斯地块的古地理位置具有重要意义。根据目前获得的有关证据,认为佳木斯地块可能曾经位于冈瓦纳大陆北缘的华北克拉通附近。  相似文献   

7.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

8.
The age of Proterozoic granulite facies metamorphism and deformation in the Strangways Metamorphic Complex (SMC) of central Australia is determined on zircon grown in syn-metamorphic and syn-deformational orthopyroxene-bearing, enderbitic, veins. SHRIMP zircon studies suggest that M 1–M 2 and the correlated periods of intense deformation (D 1–D 2) are part of a single tectonothermal event between 1,717±2 and 1,732±7 Ma. It is considered unlikely that the two metamorphic phases (M 1, M 2) suggested by earlier work represent separate events occurring within 10–25 Ma of each other. Previous higher estimates for the age of M 1 granulite metamorphism in the SMC (Early Strangways event at ca. 1,770 Ma) based on U–Pb zircon dating of granitic, intrusive rocks, are not believed to relate to the metamorphism, but to represent pre-metamorphic intrusion ages. Conventional multi-grain U–Pb monazite analyses on high-grade metasediments from three widely spaced localities in the western SMC yield 207Pb/ 235U ages between 1,728±11 and 1,712±2 Ma. The age range of the monazites corresponds to the SHRIMP zircon ages in the granulitic veins and is interpreted to record monazite growth (prograde in the metasedimentary rocks). The data imply a maximum time-span of 30 Ma for high-grade metamorphism and deformation in the SMC. There is, thus, no evidence for an extremely long period of continuous high-temperature conditions from 1,770 to ca. 1,720 Ma as previously proposed. The results firmly establish that the SMC has a very different high-grade metamorphic history than the neighbouring Harts Range, where upper amphibolite facies metamorphism in the Palaeozoic caused widespread growth or recrystallization of monazite.  相似文献   

9.
豫西秦岭杂岩变质带的分布及主期变质时代的限定   总被引:2,自引:1,他引:1  
豫西秦岭杂岩中变质分级可呈与造山带大致平行的带状分布,从两侧向中心变质级别升高,尤其南侧分带明显:由南向北,依次为黑云母带-石榴子石带-蓝晶石带-夕线石带,直至斜方辉石带,而不是整体上经历了麻粒岩相变质作用。局部发生的麻粒岩相变质未见明显向角闪岩相变质转化的退变结构。通过几种岩石的锆石LA-MC-ICPMS测年研究,多数样品中的锆石经受了后期强烈的改造,同位素体系或多或少被重置。尽管如此,侵位花岗岩和伟晶岩年龄限定了主期变质作用的时代应老于484±3Ma,并可能与早期的榴辉岩相变质作用在演化上有联系。主期变质(不包括榴辉岩相变质)性质与经典的巴罗式变质带可以对比;此外,研究区未经历明显的地壳增厚,与高喜马拉雅结晶岩系类似,秦岭杂岩可能经历了中、下地壳物质沿隧道流上升过程。  相似文献   

10.
Detailed geochronological, structural and petrological studies reveal that the geological evolution of the Field Islands area, East Antarctica, was substantially similar to that of the adjacent Archaean Napier Complex, though with notable differences in late and post Archaean times. These differences reflect the area's proximity to the Proterozoic Rayner Complex and consequent vulnerability to tectonic process involved in the formation of the latter. Distinctive structural features of the Field Islands are (1) consistent development of a discordant, pervasive S3 axial-plane foliation; (2) re-orientation of S3 axial planes to approximate to the subsequent E-W tectonic trend of the nearby Rayner Complex; (3) selective retrogression by a post-D3 static thermal overprint; and (4) relatively common development of retrogressive, E-W-trending, mylonitic shear zones. Peak metamorphic conditions in excess of 800°C at 900 ± 100 M Pa (9 kbar) were attained at one locality following, but probably close to the time of D2 folding. D3 took place in late Archaean times when metamorphic temperatures were about 650°C and pressures were about 600 MPa (6 kbar). Later, temperatures of 600 ± 50°C and pressures of 700 MPa (7kbar) were attained in an amphibolite-facies event, presumably associated with the widespread granulite to amphibolite-facies metamorphism and intense deformation involved in the formation of the Rayner Complex at about 1100 Ma. The area was subsequently subjected to near-isothermal uplift. Rb-Sr isotopic data indicate that the pervasive D3 fabric developed at about 2400–2500 Ma, and this age can be further refined to 2456+8-5 Ma by concordant zircon analyses from a syn-D3 pegmatite. All zircons were affected by only minor (<7–10%) Pb loss and/or new zircon growth during the Rayner event at about 1100Ma. Thus the 450–850 μg/gU concentrations of these zircons were too low to cause sufficient lattice damage over the 1350 Ma (from 2450 Ma) for excessive Pb to be lost during the 1100 Ma event. The emplacement of pegmatite at 522 ± 10 Ma substantially changed the Rb-Sr systematics of the only analysed rock that developed a penetrative fabric during the 1100 Ma event. Monazite in this pegmatite contains an inherited Pb component, which probably resides in small opaque inclusions. A good correlation is found between Rb-Sr total-rock ages and rock fabric. U-Pb zircon intercepts with concordia also mostly correspond to known events. However, in one example a near perfect alignment of zircon analyses, probably developed by mixing of unrelated components, produced concordia intercepts that appear to have no direct geochronological significance.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

12.
据近期成果,贺兰山—阿拉善地区出露的巨厚变质杂岩可划分为中太古界贺兰山群和叠布斯格群(其全岩Rb—Sr等时年龄为3108.3和3218.8Ma),上太古界阿拉善群和下元古界的赵池沟群、阿拉坦敖包群;它们具不同的变质矿物共生组合,太古界变质岩属低压高温变质的麻粒岩相;下元古界为低—低中压区域动力(热流)变质的绿片岩相岩石。太古界有较强的混合岩化、花岗岩化作用,并蕴藏有铁、石墨、矽线石、刚玉等多种矿产。  相似文献   

13.
Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299 ± 5 Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293 ± 6 Ma) and a metaperidotite (300 ± 6 Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299 ± 5 Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20 Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona–Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses during extensional unroofing in the Permian, at or earlier than 249 ± 7 Ma. The SCA is attributed to the ingression of fluids at 210 ± 12 Ma, related to hydrothermal activity during the breakup of the Pangaea supercontinent in the Upper Triassic/Lower Jurassic. Received: 7 July 1998 / Accepted: 4 November 1998  相似文献   

14.
柴北缘都兰高压麻粒岩的锆石U-Pb定年及其地质意义   总被引:3,自引:0,他引:3  
在柴北缘高压-超高压变质带的东端都兰地区,高压麻粒岩以透镜体的形式存在于石榴白云母片岩、花岗质片麻岩以及斜长角闪岩中。高压麻粒岩的主体为基性麻粒岩,并含少量中酸性麻粒岩。基性麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等组成,而中酸性麻粒岩峰期矿物组合为:石榴子石+斜长石+钾长石+蓝晶石+石英±单斜辉石。根据显微构造和反应结构特征,主要识别出3期变质作用:①峰期高压麻粒岩相阶段(M1);②退变质高角闪岩相阶段(M2);③绿片岩相/低角闪岩相阶段(M3)。选取典型的中酸性麻粒岩样品进行了锆石LA-ICP-MSU-Pb原位定年分析,获得加权平均年龄为446.9±6.5Ma,且CL图像显示锆石内部发育石榴子石、单斜辉石、斜长石等矿物包体,反映锆石可能形成在峰期高压麻粒岩相变质条件下。岩石学和年代学结果显示都兰高压麻粒岩和邻近的榴辉岩同时形成于同一俯冲带的不同热构造环境,高压麻粒岩并非榴辉岩热松弛作用形成的,两者具有各自独立的变质演化历史。  相似文献   

15.
董永胜  李才  陈辉  陈文  张彦 《岩石学报》2011,27(4):1198-1208
青藏高原冈底斯地块东南部的德玛拉岩群为一套角闪岩相变质岩系,一直被认为是前寒武纪变质基底,但并没有可靠的年代学证据。论文对采自其中的黑云角闪片岩和黑云母石英片岩进行了锆石LA-ICP-MS U-Pb定年和黑云母39Ar-40Ar定年,测试表明,黑云角闪片岩原岩锆石U-Pb年龄为217.1Ma,由黑云母39Ar-40Ar获得的变质年龄为22.3Ma,黑云母石英片岩中碎屑锆石主要为岩浆成因,年龄范围主要集中在520~600Ma和900~1100Ma,黑云母39Ar-40Ar变质年龄为16.3Ma和22.3Ma。上述结果虽不能完全否定西藏东南部察隅地区前寒武纪基底变质岩系的存在,但至少说明现今的德玛拉岩群中还包含有遭受中生代岩浆侵入的古生代沉积岩,它们在新生代经历了变质和岩浆作用的再造,是一套变质杂岩。  相似文献   

16.
胶东地区的荆山群呈近东西向环绕太古宙TTG花岗质片麻岩展布,主要由成熟度高的含石墨变泥砂质岩石、钙硅酸岩和大理岩组成,变质程度达高角闪岩相-麻粒岩相,具孔兹岩系性质。变质中-基性岩侵入到荆山群。它们的侵位时代对于探讨华北克拉通东部元古宙构造演化以及对荆山群沉积时代的制约,都有重要意义。锆石SHRIMP U-Pb定年结果表明,遭受低级变质的闪长岩(S0835)岩浆锆石年龄为1852±9Ma (MSWD=2.1),遭受中高级变质的辉长岩(S0816)变质锆石年龄为1865±11Ma (MSWD=0.76)。结合区域资料,可得出如下结论:(1)荆山群孔兹岩系形成于古元古代晚期(2.2~1.9Ga);(2)古元古代期间,胶东地区从挤压体制转入伸展体制的时间在1.87Ga之前。在华北克拉通中西部的恒山、大青山地区,存在1.97~1.92Ga辉长岩,在1.92~1.83Ga期间发生变质,与本文研究结果类似。这表明华北克拉通中-西部和东部具有类似的古元古代演化历史。  相似文献   

17.
Abstract The Hidaka metamorphic terrane in the Meguro-Shoya area, Hokkaido, Japan is divided into four progressive metamorphic zones: A—biotite zone; B—cordierite zone; C—cordierite–K-feldspar zone; and, D—sillimanite–K-feldspar zone of the andalusite–sillimanite facies series type of metamorphism. The metamorphic grade ranges from the higher temperature part of the greenschist facies (zone A) through the amphibolite facies (zones B and C) to the lower temperature part of the granulite facies (zone D). The zone boundaries intersect the bedding planes at high angles. P–T conditions estimated are 450–550°C and 2 kbar for zone A, 550–600°C and 2–2.5 kbar for zone B, 600–650°C and 2.5–3 kbar for zone C and 650–750°C and 3–4 kbar for zone D. The metapelites of zone D were partially melted.
At the later stage of the regional metamorphism which is early Oligocene to early Miocene in age, cordierite tonalite and biotite tonalite intrusives associated with segments of the highest grade rocks (zone D) were emplaced into the lower temperature part of the regional metamorphic rocks, giving rise to a contact metamorphic aureole. The thermally metamorphosed terrain (zone C') belongs to the amphibolite facies and its P–T conditions are estimated to have been 550–700°C and 2 kbar.
The P–T–t paths of the Hidaka metamorphism show a thickening–heating–uplifting process. The metamorphism is inferred to have taken place beneath an active island arc accompanied by partial melting of the crust.  相似文献   

18.
In situ SHRIMP U–Pb geochronology of monazite and xenotime in pelitic schists from the central Gascoyne Complex, Western Australia, shows that greenschist to amphibolite facies metamorphism occurred between c. 1030 and c. 990 Ma. Monazite from an undeformed rare‐element pegmatite from the same belt gives a 207Pb/206Pb age of c. 950 Ma, suggesting that peak metamorphism and deformation was followed by pegmatite intrusion and coeval granite magmatism. Metamorphism in the central Gascoyne Complex was previously interpreted as Barrovian, largely based on the identification of kyanite in peak metamorphic assemblages, and has been attributed to intense crustal shortening and substantial tectonic thickening during Palaeoproterozoic continent–continent collision. However, the stable Al2SiO5 polymorph has been identified in this study as andalusite rather than kyanite, and the prograde assemblages of staurolite–garnet–andalusite–biotite–muscovite–quartz indicate temperatures of 500–550 °C and pressures of 3–4 kbar. These data show that the Palaeoproterozoic Gascoyne Complex underwent an episode of Grenvillian‐aged intracontinental reworking concentrated in a NW–SE striking corridor, during the Edmundian Orogeny. Until now, the Edmundian Orogeny was thought to have involved only reactivation of structures in the Gascoyne Complex, along with deformation and very low‐ to low‐grade metamorphism of Mesoproterozoic cover rocks some time between 1070 and 755 Ma. However, we suggest that it involved regional amphibolite facies metamorphism and deformation, granite magmatism and pegmatite intrusion between c. 1030 and c. 950 Ma. Therefore, the Capricorn Orogen experienced a major phase of tectonic reworking c. 600 Myr later than previously recognized. Our results emphasize the importance of in situ geochronology integrated with petrological studies in order to link the metamorphic history of a terrane with causally related tectonic events.  相似文献   

19.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   

20.
The Yushugou terrain of high-pressure granulite fades in southern Tianshan Mountain is composed mainly of an ophiolite suite. Most selected zircons are round or elliptical in shape, and some are of tetragonal prism with round edges. The granulometric analyses showthat they are well sorted in sedimentation. ZrO2/HfO2 ratios in zircons range from 45 to 57. These characters, together with the petrologic and geochemical characters of plagioclase-garnet-orthopyroxenite bearing zircons, indicate that the protolith of plagioclase-garnet-orthopyroxenite may be derived mainly from volcanic base surge sedimentary debris in oceanic islands and from clays formed by seafloor weathering. Zircons are simply of pyroclastic debris. The ophiolite formation age of (440±18) Ma and the first-stage metamorphic age (amphibolite or granulite facies) of (364±5) Ma were obtained with a method of multiple grains in different groups and a method of concordia plot. These ages provide important information on the temporal and spatial occurrence of southern Paleozoic Tianshan Ocean, the subduction rate of the oceanic crust and the formation mechanism of ophiolite of granulite facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号