首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a previous study we have demonstrated the suitability of using vetiver grass (Vetiveria zizanioides L.) for the phytostabilization of lead‐based paint contaminated residential soils. Vetiver did not show any growth retardation or toxicity symptoms despite high soil Pb levels. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) reportedly allow plants to combat metal stress. Thus, we hypothesized that in vetiver, these antioxidant enzymes can play an important role in combating Pb induced stress, and that chelant‐bound Pb is less toxic to vetiver compared to free Pb in soil. The response of antioxidant enzymes was studied in vetiver grass grown in Pb paint‐contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Chelating agents such as ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were used to mobilize Pb from bound fractions to the labile pool, facilitating Pb uptake by vetiver. Although the Pb concentration in vetiver from these treatments was significantly higher than those grown in the absence of a chelant, the antioxidant enzymes activities were lower compared to the latter. Antioxidant enzymes activity of vetiver plants grown in the presence of chelants is lower compared to those in without chelant treatment, while they tended to increase with dose in treatments with varying chelant concentrations. Data obtained support the proposed hypothesis.  相似文献   

2.
Low cost lime‐based waste materials have recently been used to immobilize metals in contaminated soils. This study was conducted to evaluate the effects of oyster shells and eggshells as lime‐based waste materials on immobilization of cadmium (Cd) and lead (Pb) in contaminated soil, as well as their effects on metal availability to maize plants (Zea mays L.). Oyster shells and eggshells were applied to soils at 1 and 5% w/w, after which they were subject to 420 days of incubation. The toxicity characteristic leaching procedure (TCLP) test was employed to determine the mobility of Cd and Pb in soils. The results showed that the addition of waste materials effectively reduced the metal mobility as indicated by the decrease in the concentration of TCLP‐extractable Cd and Pb, and this was mainly due to significant increases in soil pH (from 6.74 in untreated soil to 7.85–8.13 in treated soil). A sequential extraction indicated that the addition of such alkaline wastes induced a significant decline in the concentration of Cd in the exchangeable fraction (from 23.64% in untreated soil to 1.90–3.81% in treated soil), but it increased the concentration of Cd in the carbonate fraction (from 19.59% in untreated soil to 36.66–46.36% in treated soil). In the case of Pb, the exchangeable fraction was also reduced (from 0.67% in untreated soil to 0.00–0.01% in treated soil), and the fraction of Pb bound to carbonate was slightly increased (from 16.61% in untreated soil to 16.41–18.25% in treated soil). Phytoavailability tests indicated that the metal concentrations in the shoots of maize plant were reduced by 63.39–77.29% for Cd and by 47.34–75.95% for Pb in the amended soils, with no significant differences being observed for the amendment types and the application rates. Overall, these results indicate that oyster shells and eggshells can be used as low cost lime‐based amendments for immobilizing Cd and Pb in contaminated soils.  相似文献   

3.
Phytoremediation of Cd‐contaminated soil using hyperaccumulators has become a new promising technique. Lonicera japonica Thunb. has been reported as a new Cd‐hyperaccumulator. In this study, the effect of Cd stress duration on growth, photosynthesis and mineral nutrition of L. japonica was investigated. At 30 days after Cd stress, there was not any visual leaf symptoms in L. japonica, and an obvious stimulating effect of 10 mg kg?1 Cd on net photosynthesis rate (PN) was well correlated to photosynthetic pigment contents and mineral nutrition (Mg and Fe) concentrations. With Cd stress time extended, no significant differences of shoots and total biomass and PN compared with the control was observed, indicating that L. japonica could develop effective tolerance mechanisms to avoid Cd‐induced damage to photosynthesis and growth. The photosynthetic performance remained functional through stomatal and non‐stomatal adjustments, and mineral nutrition responses. The improved growth based on shoots and total biomass and PN by 10 mg kg?1 Cd, as suggested by hormesis, may be beneficial to enhance the potential for phytoremediation, because it typically faced the low Cd concentrations in actual Cd‐contaminated soils. The study results indicated that L. japonica could be used for phytoremediation contaminated soils by Cd.  相似文献   

4.
Genetic transformation is gaining importance for developing plant types suitable to metal accumulate and/or hyperaccumulate. In this study, the transgenic tobacco plant which transferred the ScMTII gene from Saccharomyces cerevisiae to wild type tobacco cultivar Petite Havana (SR1) was grown on soils with low and high cadmium (Cd) and zinc (Zn) concentrations in a growth chamber for 6 weeks and compared to wild type tobacco for Cd and Zn accumulation. Cadmium and Zn accumulations in the transgenic and wild type tobacco plants were increased with the increasing Cd and Zn concentrations. Unlike Zn, the transgenic plant accumulated significantly higher amount of Cd compared to the wild type control plants. Shoot Cd concentrations of transgenic tobacco in higher Cd dosages reached the above the hyperaccumulation threshold value of 100 mg Cd kg?1 in the dry weight (DW). Transgenic tobacco accumulated 354, 400, 372, and 457 mg Cd kg?1 DW, for 10, 20, 40, and 80 mg Cd kg?1 soil treatments, respectively. These values are 3.5–4.5‐fold higher than that of Cd hyperaccumulation threshold value. With 10 mg kg?1 Cd treatment, the bioconcentration factor (BCF) of transgenic tobacco plants for Cd reached up to 35 in which the threshold value for BCF should be at least 10. Our results showed that the transgenic tobacco may be used as a good Cd hyperaccumulator plant and for phytoextraction of Cd contaminated soils, but not for Zn.  相似文献   

5.
Conflicting sorption coefficients for ortho‐phenylphenol (OPP) have been reported in the literatures, which resulted in the conflicting assessments on OPP mobility in soil. To ascertain the sorption coefficient of OPP, batch experiments were performed based on OECD guideline 106, using three types of soils. Headspace solid‐phase microextraction (HS‐SPME) and GC‐MS were applied to the determination of OPP concentration in the liquid phase. The sorption isotherms obtained for all three soils under equilibrium conditions were described well, assuming linear sorption. The organic carbon normalized distribution coefficients (Koc) ranged from 894 to 1703 L kg?1, which suggested that OPP is moderately mobile in soil. The results also showed that the Koc value of OPP can be predicted precisely from Kow, whereas it was underestimated by one order of magnitude when water solubility is used.  相似文献   

6.
Spatially discontinuous permafrost conditions frequently occur in the European Alps. How soils under such conditions have evolved and how they may react to climate warming is largely unknown. This study focuses on the comparison of nearby soils that are characterised by the presence or absence of permafrost (active‐layer thickness: 2–3 m) in the alpine (tundra) and subalpine (forest) range of the Eastern Swiss Alps using a multi‐method (geochemical and mineralogical) approach. Moreover, a new non‐steady‐state concept was applied to determine rates of chemical weathering, soil erosion, soil formation, soil denudation, and soil production. Long‐term chemical weathering rates, soil formation and erosion rates were assessed by using immobile elements, fine‐earth stocks and meteoric 10Be. In addition, the weathering index (K + Ca)/Ti, the amount of Fe‐ and Al‐oxyhydroxides and clay minerals characteristics were considered. All methods indicated that the differences between permafrost‐affected and non‐permafrost‐affected soils were small. Furthermore, the soils did not uniformly differ in their weathering behaviour. A tendency towards less intense weathering in soils that were affected by permafrost was noted: at most sites, weathering rates, the proportion of oxyhydroxides and the weathering stage of clay minerals were lower in permafrost soils. In part, erosion rates were higher at the permafrost sites and accounted for 79–97% of the denudation rates. In general, soil formation rates (8.8–86.7 t/km2/yr) were in the expected range for Alpine soils. Independent of permafrost conditions, it seems that the local microenvironment (particularly vegetation and subsequently soil organic matter) has strongly influenced denudation rates. As the climate has varied since the beginning of soil evolution, the conditions for soil formation and weathering were not stable over time. Soil evolution in high Alpine settings is complex owing to, among others, spatio‐temporal variations of permafrost conditions and thus climate. This makes predictions of future behaviour very difficult. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The geochemical characteristics and the spatial distribution of the fluoride were studied in the soils of Indo‐Gangetic plains using multivariate analysis. The fluoride (F) distribution in soil profiles and surface soil (0–15 cm) samples were studied. It was found that total fluoride (TF) in the profiles ranged from 248 to 786 mg kg?1 with a mean of 515.1 mg kg?1 whereas CaCl2 extractable soluble fluoride (FCa) was found to be in the range of 1.68 to 99.1 mg F kg?1 soil. On the other hand, in surface soils, the TF and FCa ranged from 118 to 436 mg kg?1 with a mean of 251.2 mg kg?1 and 1.01 to 5.05 mg kg?1 with a mean of 2.12 mg kg?1, respectively, in the study area. The principal component analysis revealed that the natural weathering of fluoride bearing rock and minerals, various ion‐exchange and dissolution processes in the soil, alkalinity, sodium adsorption ratio, calcium (Ca), magnesium (Mg), and clay contents of the soil are responsible for high fluoride occurrence in the area. The fluoride contamination index developed by using these factors could explain more than 76% variance of F contamination due to FCa in soils. The interpolated kriged map of FCa in surface soil indicated a distinct loop of 1.0–2.0, 2.0–3.0, 3.0–4.0, and >4.0 mg kg?1.  相似文献   

8.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

9.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

10.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

11.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

12.
The top‐soil samples were collected from urban, industrial, agricultural, and rural sites to investigate the modification in the elemental composition due to anthropogenic influence in one of the biggest city of Turkey, namely Izmir. The elemental profiles were dominated by lithophilic elements such as Al, Ca, Fe, Mg, K, and sea salt element, Na, which is typical for Mediterranean region. The trace elemental concentrations showed significant variation with higher concentrations in the industrial sites, particularly in the vicinity of iron‐steel producers from scrap materials (EAF‐Steels). Lead, Zn, and Cd around EAF‐Steels were found to be higher than other sites. Comparison to universal upper crusts and local reference soil has shown that Izmir top‐soils were contaminated in terms of many trace elements, most probably due to anthropogenic activities. Correlation matrix, crustal enrichment factors, and factor analysis were applied to investigate the extent of soil modification and possible sources. The results indicated that the elemental profiles of top‐soils were mainly determined by parent materials; however, anthropogenic activities were found to be factor effective on the profile.  相似文献   

13.
An experimental investigation is conducted to explore the suitability of Lolium perenne L., diatomite, chalcedonite, dolomite, and limestone for the phytostabilization of Ni and Cu in contaminated soil. A controlled greenhouse study is conducted. The soil is enriched with rising dose of Cu and Ni, that is, (0, 150, 250, and 350 mg kg?1) and (0, 150, 300, and 450 mg kg?1), respectively. The phytostabilization potential of perennial ryegrass is evaluated using a bioaccumulation coefficient and translocation factor. Pseudo‐total and available metal content (0.01 M CaCl2) in soils and bioaccumulated content in plants are defined in laboratory experiments using spectrophotometry experimental technique. L. perenne is adequate in phytostabilization aided programs, simultaneously, diatomite, chalcedonite, dolomite, and limestone used as modifiers are effective in reducing the accessibility and mobility of metals in Cu‐ and Ni‐polluted soils. The finding of the present study suggests that the studied element in the roots and above‐ground parts of L. perenne differs significantly upon applying mineral‐based modifications to the soil, synchronously the effect of increasing Cu and Ni levels. Application of dolomite and limestone to the soil cause the highest percentage of the above‐ground biomass. Diatomite along with limestone cause a significant boost of Cu and Ni absorption in the roots. Limestone causes an increase in the contents of K, Na, and Ca, as well as a reduction in P in the above‐ground parts of L. perenne. Limestone and chalcedonite leads to the highest decrease in available Cu and Ni.  相似文献   

14.
A mass balance model of the main Pb stores and fluxes for a typical organic‐rich upland catchment in the Peak District, UK, has been produced. The model, based on the Howden reservoir catchment, reveals that the majority of Pb in the catchment is stored within the soil (approximately 8·63 t km?2). Soil Pb levels are extremely high and can only be explained as the result of centuries of atmospheric Pb deposition from surrounding urban–industrial conurbations, and mining and smelting activity within the Peak District National Park. The atmospheric Pb flux onto the Howden catchment is approximately 107 kg a?1. The aquatic Pb flux is estimated at between 29·9 and 71·7 kg a?1; thus, at present, catchment soils are acting as a sink for Pb pollution. The Howden reservoir acts as a secondary store for Pb eroded and leached from catchment soils, with approximately 80% re‐deposited in its sediments. It is estimated that 2·3% of the catchment soil Pb pool has been retained in the reservoir sediments over its 91 year lifespan. Although the catchment is currently acting as a Pb sink, the rate of change in the soil Pb pool is very small. Future change in climate or deposition chemistry could, however, transform catchment soils into a significant source of Pb to the aquatic environment and water supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Surfactants are chemical compounds that can change the contact angle of a water drop on solid surfaces and are commonly used to increase infiltration into water repellent soil. Since production fields with water repellent soil often contain areas of wettable soil, surfactants applied to such fields worldwide will likely be applied to wettable soil, with unknown consequences for irrigation‐induced erosion, runoff, or soil water relations. We evaluated surfactant and simulated sprinkler irrigation effects on these responses for three wettable, Pacific Northwest soils, Latahco and Rad silt loams, and Quincy sand. Along with an untreated control, we studied three surfactants: an alkyl polyglycoside (APG) in solution at a concentration of 18 g active ingredient (AI) kg?1, a block copolymer at 26 g kg?1, and a blend of the two at 43 g kg?1. From 2005 to 2009 in the laboratory, each surfactant was sprayed at a rate of 46·8 l ha?1 onto each soil packed by tamping into 1·2‐ by 1·5‐m steel boxes. Thereafter, each treated soil was irrigated twice at 88 mm h?1 with surfactant‐free well water. After each irrigation, runoff and sediment loss were measured and soil samples were collected. While measured properties differed among soils and irrigations, surfactants had no effect on runoff, sediment loss, splash loss, or tension infiltration, compared to the control. Across all soils, however, the APG increased volumetric water contents by about 3% (significant at p≤0·08) at matric potentials from 0 to ? 20 kPa compared to the control. With a decrease in the liquid–solid contact angle on treated soil surfaces, surfactant‐free water appeared able to enter, and be retained in pores with diameters ≥ 15 µm. All told, surfactants applied at economic rates to these wettable Pacific Northwest soils posed little risk of increasing either runoff or erosion or harming soil water relations. Moreover, by increasing water retention at high potentials, surfactants applied to wettable soils may allow water containing pesticides or other agricultural chemicals to better penetrate soil pores, thereby increasing the efficacy of the co‐applied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Lead isotope data of sulfides and host volcanic rocks from the Bukit Botol and Bukit Ketaya deposits, the two representative deposits of the Tasik Chini volcanic‐hosted massive sulfide (VHMS) deposit, Central Belt of Peninsular Malaysia, are reported. Lead isotope compositions of the associated sulfide minerals and volcanic rocks from the Bukit Botol deposit exhibit homogeneous and less radiogenic values (206Pb/204Pb showing a range of composition from 18.14 to 18.20, 207Pb/204Pb between 15.52 and 15.59 and 208Pb/204Pb from 37.96 to 38.35). Similarly, the Pb isotopic compositions of the host volcanic rocks from the Bukit Ketaya deposit yielded a narrow range to those of the sulfide samples (206Pb/204Pb from 18.04 to 18.20, 207Pb/204Pb between 15.43 and 15.57 and 208Pb/204Pb of 37.96 to 38.30). The uniform Pb‐isotope compositions of the sulfides in the ore horizon and the host volcanic rocks from both deposits suggest a derivation from a similar source reservoir and mineralization processes. In the framework of the tectonic model for the Central Belt of Peninsular Malaysia, both deposits display a range of lead isotopic compositions originated from mixing of bulk crust/juvenile arc and minor mantle sources, which are typical for VHMS deposits in an island arc–back arc setting.  相似文献   

17.
To reduce the potential risks of cadmium (Cd) and lead (Pb) entering the human food chain in vegetables, two pot experiments (Exp. 1 and Exp. 2) were carried out to screen for Cd and Pb pollution‐safe cultivars (PSCs) of Chinese flowering cabbage (Brassica parachinensis L.). The three Cd treatments in Exp. 1 (0.114, 0.667, and 1.127 mg kg?1) showed that Chinese flowering cabbage could easily take up Cd from polluted soils, and there were wide variations in Cd accumulation among different cultivars. The Cd accumulation trait at cultivar level was rather stable under different soil Cd treatments. In Exp. 2, seven cultivars that had been shown in Exp. 1 to be typical high or low accumulators of Cd were selected and six Cd + Pb joint exposure treatments were applied to them. The results showed that there were similar trends of accumulation between Cd and Pb for the tested cultivars, but Pb accumulation by the species was much poorer than that of Cd. It was worth noting that an increase in soil Pb levels significantly (p < 0.01) depressed shoot Cd accumulation. Six cultivars were selected as Cd + Pb PSCs. This study showed that it is feasible to apply a PSC strategy in Chinese flowering cabbage cultivation, to cope with the Cd and Pb contamination commonly found in agricultural soils.  相似文献   

18.
The aim of this research was to assess the impact caused by a long‐term pollution by fluoride and heavy metals in two soils (PS1 and PS2) near an aluminium smelter in Slovakia, on soil microbial biomass C (MBC), basal respiration, metabolic quotient (qCO2) water‐soluble organic C (WSOC) and enzymes activities involved in the C, N and P biogeochemical cycles. An unpolluted soil was used as control (C0). Results obtained for soil fluoride content reflected a gradient of fluoride exposure in topsoils of contaminated sites. Decreases in microbial and enzymatic activities and in MBC to organic C ratio were found in PS2 site, which is closer to the smelter and exhibited the highest fluoride content. PS1‐soil showed an extreme alkaline pH caused by leaching of waste effluents from the smelter dumping site, higher contents of Zn, Cu, Pb and Cd, significantly larger MBC, qCO2 and catalase and urease activities, and much larger basal respiration and dehydrogenase activity than PS2 and C0‐soil. Phosphatase, β‐glucosidase and BAA‐protease were negatively correlated with WSOC, basal respiration and dehydrogenase activity, and showed some degree of inhibition in polluted sites. These results may indicate different responses of microbial communities to ecosystem disturbances, caused by the drastic changes in soil's physicochemical properties as result of the long‐term emissions of fly ash with high levels of contaminants that are still affecting soil microbial and enzymatic activities.  相似文献   

19.
Soil‐covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil‐mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X‐ray fluorescence spectroscopy, and for clay mineralogy by X‐ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices – the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon–aluminium ratio – with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4·7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号