首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Sorptive removal of Ni(II) from electroplating rinse wastewaters by cation exchange resin Dueolite C 20 was investigated at the temperature of 30°C under dynamic conditions in a packed bed. The effects of sorbent bed length 0.1–0.2 m, fixed flow rate 6 dm3 min?1, and the initial rinse water concentration (C0) 53.1 mg L?1 on the sorption characteristics of Dueolite C 20 were investigated at an influent pH of 6.5. More than 94.5% of Ni(II) was removed in the column experiments. The column performance was improved with increasing bed height and decreasing the flow rate. The Thomas, Yoon–Nelson, Clark, and Wolborska models were applied to the experimental data to represent the breakthrough curves and determine the characteristic design parameters of the column. The sorption performance of the Ni(II) ions through columns could be well described by the Thomas, Yoon–Nelson, and Wolborska models at effluent‐to‐influent concentration ratios (C/C0) >0.03 and <0.99. Among the all models, the Clark model showed the least average percentage time deviation. The sorptive capacity of electroplating rinse water using Ni(II) was found to be 45.98 mg g?1.  相似文献   

2.
The adsorption of Cu(II) onto HCl treated rubber leaf powder (HHBL) was investigated in batch and column studies. The adsorbent was characterized by spectroscopic and quantitative analyses in order to understand the mechanism of copper adsorption. HHBL is mesoporous in nature as indicated by Bruneuer, Emmett and Teller (BET) analysis, and has various kinds of functional groups such as Si‐OH, ROH, RCOOH, RCOO, RNH2, C‐O‐C and aromatic rings as detected by Fourier transform infrared (FTIR) spectroscopy. Copper adsorption was confirmed by scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDS). The equilibrium process was described well by the Langmuir isotherm model, and a maximum adsorption capacity of 8.39 mg/g was recorded for the smallest adsorbent size (<180 μm). The two main adsorption mechanisms involved were ion exchange and complexation. The fixed bed column study demonstrated satisfactory applicability of HHBL in removing Cu(II) from aqueous solutions.  相似文献   

3.
The potential to remove Ni(II) ions from aqueous solutions using sea beach sand, a carbonate‐quartz mineral, was thoroughly investigated. The effects of relevant parameters such as solution pH, adsorbent dose, metal ions concentration, and temperature on Ni(II) sorption onto beach sand were examined. The sorption data followed the Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The adsorption was endothermic in nature at ambient temperature and the computation of the parameters, ΔH, ΔS and ΔG indicated the interactions between sorbate and sorbent to be thermodynamically favorable. Equilibrium was achieved very quickly within 30 min of shaking. A pseudo‐first order Lagergren equation was used to test the adsorption kinetics. Other kinetic models, e. g., the Morris‐Weber and Reichenberg equations, were used to calculate the rate constant of intraparticle diffusion and the fate of the diffusion process, respectively. The influence of some of the common cations and anions were also a subject of this study.  相似文献   

4.
Magnetite nanoparticles were applied to remove Ni(II) from aqueous solutions as a function of pH, contact time, supporting electrolyte concentration, and analytical initial Ni(II) concentration. The highly crystalline nature of the magnetite structure with diameter of around 10 nm was characterized with transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). The surface area was determined to be 115.3 m2/g. Surface chemical properties of magnetite at 25°C in aqueous suspensions were investigated. The point of zero charge (pHzpc) was found to be 7.33 and the intrinsic acidity constants (${\rm p}K_{{\rm a}1}^{{\rm s}} $ and ${\rm p}K_{{\rm a}2}^{{\rm s}} $ ) were found to be 9.3 and 5.9, respectively. The surface functional groups were investigated with Fourier transform‐infrared spectroscopy (FTIR) as well. Batch experiments were carried out to determine the adsorption kinetics and mechanism of Ni(II) by these magnetite nanoparticles. The adsorption process was found to be pH dependent. In NaCl solutions, Ni(II) adsorption increased with increasing ionic strength while in NaClO4 solutions, Ni(II) adsorption exhibited little dependence on the ionic strength of the solution. The adsorption process better followed the pseudo‐second order equation and Freundlich isotherm.  相似文献   

5.
Using batch method, the adsorption of thallium(I) ions from aqueous solutions on eucalyptus leaves powder, as a low cost adsorbent, was studied. The effect of various modification of considered adsorbent on the adsorption percentage of Tl(I) is an important feature of this study. The results showed that the unmodified and acidic modified adsorbent are the poor adsorbents for the Tl(I) ions while basic modified adsorbent is a suitable adsorbent. Also, the effect of some experimental conditions such as solution initial pH, agitation speed, contact time, sorbent dosage, temperature, particle size, and thallium initial concentration was studied. The results showed that the adsorption percentage depends on the conditions and the process is strongly pH‐dependent. The satisfactory adsorption percentage of Tl(I) ions, 81.5%, obtained at 25 ± 1°C. The equilibrium data agreed fairly better with Langmuir isotherm than Freundlich and Temkin models. The value of qm that was obtained by extrapolation method is 80.65 mg g?1. Separation factor values, RL, showed that eucalyptus leaves powder is favorable for the sorption of Tl(I). The negative values of ΔH0 and ΔS0 showed that the Tl(I) sorption is an exothermic process and along with decrease of randomness at the solid–solution interface during sorption, respectively.  相似文献   

6.
Granular activated carbon (GAC) adsorption of two representative taste and odor (T & O) compounds, 2‐isopropyl‐3‐methoxy pyrazine (IPMP), and 2‐isobutyl‐3‐methoxy pyrazine (IBMP), in drinking water was investigated. Results show that the modified Freundlich equation best fit the experimental data during the adsorption isotherm tests, and the pseudo first‐order kinetics and intra‐particle diffusion kinetics well described the adsorption kinetics pattern. The calculated thermodynamic parameters (ΔH0, ΔS0, and ΔG0) indicated a spontaneous and endothermic adsorption process. Factors affecting the treatment efficiency were carefully evaluated. Acidic and alkaline conditions both favored GAC adsorption of IPMP and IBMP, especially the former. With the GAC dosage increasing, the first order adsorption rates increased, while the intra‐particle adsorption rates decreased. Within 12 h, 200 mg/L GAC could remove >90% of 150 µg/L IPMP and IBMP via adsorption at pH 3–11. Therefore, GAC is a promising treatment technology to control the T & O compounds associated water pollution.  相似文献   

7.
Biomass char (BC) deriving from fast pyrolysis of biomass was a potential adsorption material due to its relative high fixed‐carbon content and the inherent porous structures. Adsorption of phosphate from aqueous solution by BC was investigated in this paper. The results showed that the adsorption capacity of BC was dependent on pyrolysis conditions, such as temperature and holding time. The maximum adsorption capacity for phosphate was approximately 15.11 mg g?1 at 298 K. The pseudo‐second order model of the adsorption kinetics indicated that the adsorption process was complex and several mechanisms were involved. Equilibrium isotherm was satisfactorily followed the Freundlich isotherm model. The KF value in Freundlich equation gradually increased with elevating temperature. Moreover, the thermodynamic constants: ΔG0, ΔH0, and ΔS0 were evaluated as ?6.49 kJ mol?1 (at 298 K), 13.41 kJ mol?1, and 66.70 J mol?1 K?1, respectively. Phosphate adsorption onto BC was spontaneous and endothermic. As a waste, BC was a potentially attractive adsorbent for phosphate removal from aqueous solution with low cost and high capability.  相似文献   

8.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

9.
A simple and rapid soft‐templating coupled with one‐pot solvent thermal method is developed to synthesize S‐doped magnetic mesoporous carbon (S‐doped MMC). In this method, phenolic resin is used as a carbon precursor and Pluronic copolymer P123 is used as a template and 2,5‐dimercapto‐1,3,4‐thiadiazole is used as sulfur source. Prepared S‐doped MMC processes a high specific surface area, the Fe3O4 particles are well embedded in the mesoporous carbon walls that exhibit a strong magnetic response, and the hydrated iron nitrate loading amount of 0.808 g is the best. Batch adsorption experiments are carried out at different pH, initial concentration, temperature, and contact time on the adsorption of methyl orange (MO) by S‐doped MMC. The kinetic data of the adsorption process are better fitted with pseudo‐second‐order model than the pseudo‐first‐order model. Langmuir model is more suitable for the equilibrium data than Freundlich model. The thermodynamic parameters including ΔG0, ΔH0, and ΔS0 indicate that the adsorption is a feasible, spontaneous, and endothermic process. Finally, it is found that the coexistence of PO43?, NO3?, SO42?, Cl?, and CO32? does not influence the adsorption process. These results illustrate S‐doped MMC can be an efficient adsorbent for the removal of MO from wastewater.  相似文献   

10.
In this study, a modified method was used to increase the adsorption of lead ions from aqueous solutions by using modified clay mineral on the laboratory scale. Adsorption experiments have been carried out on the use of both thermal activated sepiolite (TAS) and their glutamate/sepiolite modification (GS) as adsorbents. The experimental data was analyzed using adsorption kinetic models (pseudo first‐ and second‐order equations). The pseudo second‐order kinetic model fitted well to the kinetic data (R2 ≥ 0.99). Then, the Freundlich and Langmuir models were applied to describe the uptake of Pb(II) on GS and the Langmuir isotherm model agrees well with the equilibrium experimental data (R2 ≥ 0.97). The maximum adsorption capacity was observed to be 128.205 mg/g by GS according to the Langmuir equation. Desorption efficiency of the GS was studied by the batch method using EDTA, HCl, and HNO3 solutions. Desorption of 69.18, 74.55, and 80% of Pb(II) from GS was achieved with 0.1 M EDTA, 0.1 M HCl, and 0.1 M HNO3 solutions, respectively. FTIR analysis suggests the importance of functional groups such as amino, hydroxyl, and carboxyl during Pb(II) removal. SEM observations demonstrated that an important interaction at the lead‐modified sepiolite interface occurred during the adsorption process. In addition, the thermodynamic constants was calculated that the values of the Gibbs free energy (ΔG*), enthalpy (ΔH*), and entropy (ΔS*) of modification were 86.79 kJ/mol, ?18.91 kJ/mol, and ?354.70 J/mol/K, respectively. The negative value of ΔH* shows exothermic nature of adsorption.  相似文献   

11.
In the present study, a novel adsorbent, poly (2‐hydroxyethylmethacrylate‐hydroxyapatite) [P(HEMA‐Hap)], was prepared and characterized. The synthesis was achieved by means of free‐radical polymerization and a number of structural characterization methods, including FT‐IR, XRD, TGA, SEM, BET‐porosity, and swelling tests. Pb2+ adsorption was performed using a series of pH, time, and temperature ranges. The reusability of the composite was also tested. The results obtained indicated that the novel adsorbent is able to bind Pb2+ ions with strong chemical affinity. The adsorption results were fitted to the classic Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) sorption models. Thermodynamic parameters obtained demonstrated that the sorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), as expected. The process was also consistent with the pseudo‐second‐order model, and chemical adsorption was determined to be the rate‐controlling step. It was also shown that the composite could be used for five consecutive adsorption processes.  相似文献   

12.
In India, the annual production of tea is ca. 857,000 tonnes, which is 27.4% of the total world production. The amount of tea factory waste (TFW) produced per annum after processing is ca. 190,400 tonnes. TFW can be used as a low cost adsorbent for the removal of toxic metals from the aqueous phase. An investigation was carried out to study the feasibility of the use of TFW as an adsorbent for the removal of the heavy metal, zinc. Equilibrium, kinetic and thermodynamic studies were reported. The straight line plot of log (qeq) versus time t for the adsorption of zinc shows the validity of the Lagergren equation. The various steps involved in adsorbate transport from the solution to the surface of the adsorbent particles were dealt with by using a Weber‐Morris plot, qe versus t0.5 for the TFW. The rate controlling parameters, kid,1 and kid,2, were determined and it was found that the macro‐pore diffusion rate was much larger than micro‐pore diffusion rate. A batch sorption model, which assumes the pseudo‐second‐order mechanism, was used to predict the rate constant of sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc (II) ion concentration. Equilibrium data obtained from the experiments were analyzed with various isotherms, i. e., Freundlich, Langmuir, Redlich‐Peterson and Tempkin. The adsorption equilibrium was reached in 30 min and the adsorption data fitted well to all models. The maximum adsorption capacity of TFW for zinc (II) ions was determined to be 14.2 mg/g. The capacity of adsorption on Zn(II) increased with increasing temperatures and pH. The maximum uptake level of zinc was observed at pH of 4.2. The various thermodynamic parameters, i. e., ΔG°, ΔH° and ΔS°, were estimated. The thermodynamics of the zinc ion/TFW system indicated a spontaneous, endothermic and random nature of the process. The results showed that the TFW, which has low economical value, is a suitable adsorbent for the removal of zinc (II) ions from aqueous solutions.  相似文献   

13.
Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co‐existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich–Peterson, and Toth models. A maximum adsorption capacity of 164 mg g?1 for Cu(II), 109 mg g?1 for Ni(II), and 105 mg g?1 for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second‐order. Presence of EDTA and co‐ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams–Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50–300 A cm?2).  相似文献   

14.
The surface of the bacterial cells before the biosorption of Zn(II) ion has been found rough, heterogeneous, and non‐crystalline together with tremendous protrusions and negatively charged functional groups. The bacterium was characterized as rod shaped with Gram‐negative type of cell wall structure. In reaction dynamics, pseudo‐second‐order kinetics with higher linear correlation coefficient (R2) ranging between 0.97 and 0.99, lower sum of square errors (SSE) (0.035–0.081) and chi (χ2) (0.0013–0.009) provided a better explanation of sorption of Zn(II) ion on bacterium surface as compared to pseudo‐first‐order model. The removal of Zn(II) was governed by both film and intra‐particle diffusion at onset and later stage of sorption of metal ion on the surface of bacterial cells. The R2 (0.92–0.94) for intra‐particle diffusion model was quite higher with lower values of SSE (9.56–16.33) and chi (χ2) (11.26–19.65) against the Bangham's model. The positive value of ΔH (16.628 × 10?6 kJ/mol) and ΔS (5320.90 kJ/mol/K) showed that the biosorption of Zn(II) ion across liquid phase on bacterial surface was endothermic with increased randomness at solid–liquid interface. The negative values of ΔG demarcated the whole process as spontaneous in nature. In the present work, the distribution coefficient was found to be > 0.5 at various temperature ranges. At the attainment of equilibrium, the residual concentration of Zn(II) ion in liquid phase was around 0.6 mg/L, which was much below the limit described by United States Environmental Protection Agency (USEPA), i.e. 5 mg/L.  相似文献   

15.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

16.
The increased accumulation of toxic pharmaceuticals and personal care products in the environment is a concern of worldwide relevance. Efficient technologies are needed to mitigate the level of such chemicals in natural waters. The suitability of multi‐walled carbon nanotubes (MWCNTs) to remove aqueous triclosan (a widely used anti‐microbial agent) was investigated in the present study. Tested operational parameters included the pH (3.0–11.0) value and the ionic strength (10?3, 10?2, and 10?1 M). Kinetic and thermodynamic studies were conducted at different initial concentrations (4, 8, and 10 mg/L) and temperatures (288, 298, and 308 K). Results showed higher triclosan adsorption at pH 3.0 (157.7 mg/g) than at pH 11.0 (103.9 mg/g). With an increase of ionic strength from 10?3 to 10?2 M, the adsorption capacity increased from 136.1 to 153.1 mg/g and from 80.8 to 105.8 mg/g at pH 3.0 and 10.0, respectively, while further increase of ionic strength to 10?1 M slightly reduced the triclosan adsorption to 149.9 and 94.7 mg/g due to the aggregation of MWCNTs. The Polanyi–Manes model (PMM) provided a best fitting of adsorption isotherms to the experimental data, and the kinetic process was well described by the pseudo second‐order kinetic model. The calculated thermodynamic parameters (ΔH0 = ?88.08 kJ/mol, ΔS0 = ?173.38 J/mol K) suggested that the adsorption of triclosan is spontaneous and exothermic in nature. The findings of the present work have significant implications for the removal of triclosan from aqueous solution with MWCNTs.  相似文献   

17.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

18.
In this study, the removal of zinc(II) ion from an aqueous solution by pistachio shells (PS) is investigated. The dynamic behavior of the adsorption is examined on the effects of pH, adsorbent dosage, and contact time. The adsorption rates are determined quantitatively and simulated by the Lagergren first order, pseudo‐second order, Elovich, and intra‐particle diffusion kinetic models. The adsorption kinetic models are also tested for validity. The thermodynamic parameters, which are also deduced from adsorption experiments, are very useful in elucidating the nature of adsorption. The experimental results reveal that the optimum pH value and the contact time for the adsorption of Zn2+ onto PS are found as 6 and 10 min, respectively. According to these parameters, adsorption process follows the pseudo‐second order kinetic model with high correlation coefficients (R2 = 0.999). The obtained results demonstrate that PS is a reasonably effective adsorbent for the removal of Zn2+ from aqueous leachate of hazardous waste.  相似文献   

19.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

20.
The removal of heavy metals such as Ni(II), Zn(II), Al(III), and Sb(III) from aqueous metal solutions was investigated using novel, cost effective, seaweed derived sorbents. Studies with a laboratory scale fixed‐bed sorption column, using a seaweed waste material (referred to as waste Ascophyllum product (WAP)) from the processing of Ascophyllum nodosum as biosorbent, demonstrated high removal efficiencies (RE) for a variety of heavy metals including Ni(II), Zn(II) and Al(III), with 90, 90 and 74% RE achieved from initial 10 mg/L metal solutions, respectively. The presence of Sb(III) in multi component metal solutions suppressed the removal of Ni(II), Zn(II) and Al(III), reducing the RE to 28, 17 and 24%, respectively. The use of Polysiphonia lanosa as a biosorbent showed a 67% RE for Sb(III), both alone and in combination with other metals. Potentiometric and conductometric titrations, X‐ray photoelectron and mid‐infrared spectroscopic analysis demonstrated that carboxyl, alcohol, sulfonate and ether groups were heavily involved in Sb(III) binding by P. lanosa. Only carboxyl and sulfonate groups were involved in Sb(III) binding by WAP. Furthermore, a greater amount of weak acidic groups (mainly carboxylic functions) were involved in Sb(III) binding by P. lanosa, compared to WAP which involved a greater concentration of strong acidic groups (mainly sulfonates).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号