首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
测绘学   1篇
地球物理   12篇
地质学   4篇
海洋学   2篇
天文学   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2008年   3篇
排序方式: 共有20条查询结果,搜索用时 46 毫秒
1.
There exist a number of landslides along the north Anatolian fault zone (NAFZ) between Tasova and Alparslan in Amasya province in Turkey. These landslides extending over an area of 2.5 × 6.0 km are triggered by steepening of slopes due to undercutting by the Yesilirmak River and groundwater fluctuations. The landslides have affected 30 buildings in the western part of Tasova. In this study, in order to investigate the engineering geological characteristics of the landslides and their environmental impacts, representative samples from geological units were collected and a total of six boreholes were drilled. Plastic pipes were installed into the boreholes to measure the groundwater fluctuations and to determine the position of the sliding surface. For a two-year monitoring period, using a GPS linked to a fixed station system, the magnitude of the movements ranged between 11.7 and 17.6 cm at the toe of landslide. The landslides that occurred in the study area were in the form of retrogressive circular and multiple circular failures. The factor of safety along a number of cross-sections calculated by the limit-equilibrium method of analysis is 0.96 in static condition. After further analyses, construction of a toe buttress with surface drainage may be suggested as a remedial measure to minimize the effects of these landslides.  相似文献   
2.
The index flood procedure coupled with the L‐moments method is applied to the annual flood peaks data taken at all stream‐gauging stations in Turkey having at least 15‐year‐long records. First, screening of the data is done based on the discordancy measure (Di) in terms of the L‐moments. Homogeneity of the total geographical area of Turkey is tested using the L‐moments based heterogeneity measure, H, computed on 500 simulations generated using the four parameter Kappa distribution. The L‐moments analysis of the recorded annual flood peaks data at 543 gauged sites indicates that Turkey as a whole is hydrologically heterogeneous, and 45 of 543 gauged sites are discordant which are discarded from further analyses. The catchment areas of these 543 sites vary from 9·9 to 75121 km2 and their mean annual peak floods vary from 1·72 to 3739·5 m3 s?1. The probability distributions used in the analyses, whose parameters are computed by the L‐moments method are the general extreme values (GEV), generalized logistic (GLO), generalized normal (GNO), Pearson type III (PE3), generalized Pareto (GPA), and five‐parameter Wakeby (WAK). Based on the L‐moment ratio diagrams and the |Zdist|‐statistic criteria, the GEV distribution is identified as the robust distribution for the study area (498 gauged sites). Hence, for estimation of flood magnitudes of various return periods in Turkey, a regional flood frequency relationship is developed using the GEV distribution. Next, the quantiles computed at all of 543 gauged sites by the GEV and the Wakeby distributions are compared with the observed values of the same probability based on two criteria, mean absolute relative error and determination coefficient. Results of these comparisons indicate that both distributions of GEV and Wakeby, whose parameters are computed by the L‐moments method, are adequate in predicting quantile estimates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.  相似文献   
4.
In the present study, a novel adsorbent, poly (2‐hydroxyethylmethacrylate‐hydroxyapatite) [P(HEMA‐Hap)], was prepared and characterized. The synthesis was achieved by means of free‐radical polymerization and a number of structural characterization methods, including FT‐IR, XRD, TGA, SEM, BET‐porosity, and swelling tests. Pb2+ adsorption was performed using a series of pH, time, and temperature ranges. The reusability of the composite was also tested. The results obtained indicated that the novel adsorbent is able to bind Pb2+ ions with strong chemical affinity. The adsorption results were fitted to the classic Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) sorption models. Thermodynamic parameters obtained demonstrated that the sorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), as expected. The process was also consistent with the pseudo‐second‐order model, and chemical adsorption was determined to be the rate‐controlling step. It was also shown that the composite could be used for five consecutive adsorption processes.  相似文献   
5.
Baker's yeast industry has significant effects on environment due to significant water consumption and high strength wastewater production. Effluents from baker's yeast industry are characterized by high concentrations of biological oxygen demand (BOD5), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total dissolved solids (TDS), sulfate, and dark brown color. The aim of this study is to provide a detailed quantitative and qualitative identification and characterization of the wastewater sources from different processes of a baker's yeast industry. It is identified that the most polluted wastewater components of the facility are coming from rotary drum filter and evaporation process. However, the highest pollution loads is identified as tank and equipment cleaning effluent due to very high flow rate from this source. The efforts should be on the way to minimize the water usage for the tank and equipment cleaning process, and to recycle less polluted waste streams back to the process.  相似文献   
6.
Groundwater bearing alluvial units in the seismically active settlement areas may bring out probable damage on the urban and built environment due to liquefaction. Bolu settlement area and surroundings are located in the North Anatolian Fault Zone. Geotechnical boreholes were drilled in order to determine the distribution of the geological units, to obtain representative soil samples and to measure groundwater level. Quaternary aged alluvium is the main geological unit in the South of study area. Stiffness and consistency of the soils were determined by Standart penetration test. P and S wave velocities of soil have been measured along the seismic profiles. The index and physical properties of the samples have also been tested in the laboratory. Liquefaction potential and safety factor of the sandy levels in Quaternary aged alluvium were investigated by different methods based on SPT and V s. Liquefaction seems to be a significant risk in case of an earthquake with a max = 0.48 g and M w = 7.5 at different levels of the boreholes. This situation may bring out environmental problems in the future.  相似文献   
7.
The purpose of this study is to explain the formation mechanism of the floods which occurred in the Keçidere basin in 2009. In this study, discharge data in between 1981 and 2009, digital elevation model (DEM), satellite images and field works were used as a main data sources. LPT3 was applied to 29-year maximum flow data to produce different flood return periods such as 2, 5, 50, 100, 200, 500 and 1000-year flood. The DEM was created using 1:25,000 topographic contours with Topo to Raster interpolation techniques in geographical information systems (GIS). Land use and some geometric data were digitized using high resolution satellite images for hydraulic modelling purposes. Simulation of the 2009 flash flood event and different return periods flow data was done using one-dimensional hydraulic modelling with HEC-RAS. In the last phase, results obtained from the simulations and field works were compared based on fits statistics and mean absolute error in terms of extent and depth. An analysis of water extent and depth features observed during the highest flow ever measured in the basin revealed that the result overlapped with 500-year inundation extent. Overall, the results of the research indicate that GIS is an effective environment for floodplain mapping and analysis.  相似文献   
8.
Marine Geophysical Research - Predictive deconvolution is an effective way to suppress multiple reflections, especially short path multiples, in seismic data. However, the effectiveness of the...  相似文献   
9.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   
10.
High-resolution deconvolution can mathematically be viewed as a regularized inverse problem. Besides, the result of the high-resolution deconvolution is generally accepted as reflectivity series of the layered media. On the other hand, lateral continuity is frequently poorer than vertical resolution on post-stack seismic section after application of any high-resolution deconvolution. However, because of the ill-posed inherent of the deconvolution problem, the Cauchy norm regularization term, a non-quadratic prior-information is widely used to provide the stability and uniqueness of the problem. But, it does not provide adequate quality of deconvolution if the noise in the data is strong. In this study, a stable and high-resolution deconvolution of post-stack seismic data was accomplished by an iterative inversion algorithm incorporating the Cauchy norm regularization with FX filter weighting. Cauchy norm regularization was utilized to force the solution to a spikiness structure, while the effective random noise reduction was performed by using the FX filter. Applications to synthetic and real post-stack data showed that the resolution in the vertical direction and continuity in the lateral direction are better improved. Thus, we think that this process makes seismic sections obtained especially from thin layered sedimentary basins more interpretable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号