首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates of mixing on the South China Sea shelf   总被引:3,自引:3,他引:0  
1 Introduction The outer shelf of the South China Sea is a di- verse environment characterized by sharp changes in bottom topography (Wang et al., 2002). Internal wave and diapycnal mixing may be a vital mechanism con- trolling the distribution of physical water properties, nutrient fluxes, and concentrations of particulate mat- ter. Therefore, the research on diapycnal mixing on the outer shelf in the South China Sea is of great impor- tance to explore the level and variability of the abov…  相似文献   

2.
A seasonal simulation from a medium-resolution ocean general circulation mode (OGCM) is used to investigate the vertical structure variability of the Southeast Pacific (SEP). The focus is on the extra-tropical Rossby wave (ETRW) variability and associated forcing mechanism. Some aspects of the model mean state are validated from available observations, which justifies a vertical mode decomposition of the model variability. The analysis of the baroclinic mode contributions to sea level indicates that the gravest mode is dominant over most of the domain at all frequencies. Annual variability is on average twice as large as the semi-annual variability which is confined near the coast for all the modes. The first baroclinic mode contribution to the annual cycle exhibits a clear westward propagation north of the critical latitude. The higher-order modes only contribute near the coast where they are associated with vertically propagating energy. The residual variability, which is the energy at all timescales other than annual and semi-annual periods peaks offshore between 20°S and 30°S for all baroclinic modes. The third baroclinic mode also exhibits a relative maximum variability off the coast of Peru south of the critical latitude of the annual cycle (13°S), where the Peru–Chile Undercurrent is the most intense. Sensitivity experiments to the atmospheric and boundary forcing suggest that the residual variability results from the non-linear interaction between annual Rossby waves and the mean flow, while the annual ETRWs in the model result from the summed-contribution from both the local wind stress and remote equatorial forcing. Overall the study extends the classical analysis of sea level variability in the SEP based on linear theory, and suggests that the peculiarities of the baroclinic modes need to be taken into account for interpreting the sea level variability and understanding its connection with the equatorial variability.  相似文献   

3.
利用1992—2002年的温盐深数据与2012—2016年的Argo数据,基于细尺度参数化方法研究了吕宋海峡及周边海域(12°—30°N,115°—129°E)湍流混合的时空分布特征,并分析了地形粗糙度、内潮以及风输入的近惯性能通量对湍流混合的影响。结果表明,吕宋海峡和东海陆坡处具有强混合的特征,扩散率高达4×10~(-3) m~2/s,主要是由内潮产生导致的,其中吕宋海峡主要是M2、K1和O1内潮的贡献,而东海陆坡处主要是M_2内潮的贡献;南海北部也呈现较强的混合,且陆坡处的混合比海盆高1—2个量级;南海中央海盆和离岸的菲律宾海混合较弱,扩散率为O (10-5 m2/s)。此外,在研究区域内,湍流混合的年际变化和季节变化均不明显,且混合扩散率与风输入的近惯性能通量未表现出明显的季节相关。  相似文献   

4.
Two strings of moored current meters deployed between March 1993 and May 1994, together with monthly CTD surveys, provide the first comprehensive set of observations over the seasonal cycle in the Clyde Sea. In the summer, a strong thermal stratification maintained a partial isolation of the deep waters. In winter, the stratification was weaker, and a 1 °C temperature inversion was persistent from November to the end of March. Rapid inflow of dense water from the North Channel of the Irish Sea served to re-establish the strong stratification in the spring. The mean rate of exchange was estimated from the salinity (practical salinity scale) and mass budgets to be 1·1×104 m3 s−1, indicating an average flushing time for the Clyde Sea of 3–4 months.Episodic increases in deep water salinity indicated that bottom water renewal occurred throughout the winter. Intense renewal events were observed in March 1993 and February 1994, when the North Channel density was near its seasonal maximum, and were coincident with periods of high wind stress. In the month prior to these rapid spring inflows, the basin bottom salinity reached its seasonal minimum, indicating that the effects of mixing dominated over renewal at this time. A marked inflow in the summer was inferred from the salinity budget, and observed as a salinity increase at a depth of 90 m. A 2-layer flow was observed in the Arran Deep basin throughout the year, the surface flow forming part of a clockwise circulation about Arran, with an opposing bottom layer circulation. This surface circulation prevents freshwater from entering the Kilbrannan Sound, leaving this area relatively susceptible to deep water mixing by the wind.At a station in the north of the basin, the internal tidal current was observed to have an amplitude of 2–3 cm s−1, which is half the amplitude of the barotropic tide. The energy available to mix the water column mixing associated with the internal tide at this position is estimated to be 0·01 mWm−2, which is 2 orders of magnitude less than wind mixing. The kinetic energy density in the Clyde Sea was found to be predominantly in low frequency oscillations (<1·0 cycles per day), the seasonal variation exhibiting some correlation with the wind.  相似文献   

5.
High-resolution (1.8 km) simulations of the shelf seas west of Great Britain with the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) demonstrate the formation of an intense field of baroclinic eddies in open stratified waters such as the Celtic Sea. These eddies are most likely to be the result of an inverse energy cascade resulting from tidal flow over rough topography, as demonstrated by a series of idealised model experiments. They are shown to possess many of the properties of eddies identified in idealised laboratory and numerical simulations. Namely, they are predominantly anticyclonic and they merge to increase their size up to a limit set by the internal Rossby radius. An investigation of satellite sea surface temperature observations provides indirect evidence that these model eddies are too energetic, long-lived and frequent. The inclusion of a horizontal diffusion term with a shear dependent diffusivity is shown to significantly reduce the eddy kinetic energy and improve the simulation, without significantly affecting the results in other regions. An optimal parameter value is suggested for this resolution, but the need to put the treatment of horizontal turbulence in such models on a sounder theoretical or empirical footing is identified.  相似文献   

6.
Locally enhanced turbulent mixing over rough bottom bathymetry is one of the candidates that might make up for the lack of diapycnal diffusivity in maintaining the global overturning circulation. In the present study, using a two-dimensional vertical numerical model for the Brazil Basin, we numerically examine the intensity and vertical structure of tide-induced mixing over multi-beam bottom bathymetry via the comparison with those over somewhat smoothed bottom bathymetry. Note that even this smoothed bottom bathymetry is finer than in commonly used datasets. In comparison to the response over the smoothed bottom bathymetry, energy dissipation rates are enhanced within a few hundred meters over the multi-beam bottom bathymetry. In spite of several limitations of the two-dimensional vertical numerical model, the magnitude and vertical distribution of the calculated dissipation rates agree well with those from microstructure measurements. We find that tidal interaction with fine-scale (≤2 km) bottom bathymetry efficiently generates high wavenumber internal waves, which are subject to local energy dissipation and hence strongly control the abyssal mixing; the most important finding is that the intensity and vertical decay scale of abyssal mixing are in a trade-off relationship with each other, which is not taken into account in the existing parameterizations.  相似文献   

7.
The pattern and magnitude of the global ocean overturning circulation is believed to be strongly controlled by the distribution of diapycnal diffusivity below 1000 m depth. Although wind stress fluctuation is a candidate for the major energy sources of diapycnal mixing processes, the global distribution of wind-induced diapycnal diffusivity is still uncertain. It has been believed that internal waves generated by wind stress fluctuations at middle and high latitudes propagate equatorward until their frequency is twice the local inertial frequency and break down via parametric subharmonic instabilities, causing diapycnal mixing. In order to check the proposed scenario, we use a vertically two-dimensional primitive equation model to examine the spatial distribution of “mixing hotspots” caused by wind stress fluctuations. It is shown that most of the wind-induced energy fed into the ocean interior is dissipated within the top 1000 m depth in the wind-forced area and the energy dissipation rate at low latitudes is very small. Consequently, the energy supplied to diapycnal mixing processes below 1000 m depth falls short of the level required to sustain the global ocean overturning circulation.  相似文献   

8.
New and published data on the distribution and speciation of manganese and iron in seawater are analyzed to identify and parameterize major biogeochemical processes of their cycling within the suboxic (15.6σt16.2) and anoxic layers (σt16.2) of the Black Sea. A steady-state transport-reaction model is applied to reveal layering and parameterize kinetics of redox and dissolution/precipitation processes. Previously published data on speciation of these elements in seawater are used to specify the nature of the transformations. Two particulate species of iron (Fe(III) hydroxide and Fe(II) sulfide) are necessary to adequately parameterize the vertical profile of suspended iron, while three particulate species (hydrous Mn(IV) oxide, Mn(II) sulfide, and Mn(II) carbonate) are necessary to describe the profile of suspended manganese. In addition to such processes as mixing and advection, precipitation, sinking, and dissolution of manganese carbonate are found to be essential in maintaining the observed vertical distribution of dissolved Mn(II). These results are used to interpret the observed difference in the form of vertical distribution for dissolved Mn(II) and Fe(II). Redox transformations of iron and manganese are coupled via oxidation of dissolved iron by sinking suspended manganese at σt16.2±0.2 kg m−3. The particulate manganese, necessary for this reaction, is supplied through oxidation of dissolved Mn(II). The best agreement with observations is achieved when nitrate, rather than oxygen, is set to oxidize dissolved Mn(II) in the lower part of the suboxic layer (15.90σt16.2). The results support the idea that, after sulfides of these metals are formed, they sink with particulate organic matter. The sinking rates of the particles and specific rates of individual redox and dissolved-particulate transformations have been estimated by fitting the vertical profile of the net rate.  相似文献   

9.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

10.
C37–C39 alkenones were measured in time-series sediment trap samples collected from August 1998 to June 2000 at two depths in the seasonal sea ice region of the western Sea of Okhotsk, off Sakhalin, in order to investigate alkenone production and water-column processes in the region. Measurable export fluxes of alkenones are ranged from < 0.1 to 5.8 μg/m2/day and clearly showed that the alkenone production was restricted to autumn. In 1998, maximum export flux of alkenones occurred in September when surface water column was well stratified with low nutrients in the surface mixing layer. In the next year, the maximum flux is observed in October. Comparison between alkenone temperature and satellite based sea surface temperature (SST) shows that the estimated alkenone temperatures in August 1998 were found to be  10 °C lower than the temporal satellite SST, suggesting that alkenones are produced in surface to subsurface thermocline layers during the period. Annual mean flux of alkenones is lower in the lower traps than that of the upper traps, suggesting rapid degradation of alkenones in water column, but the UK37′ value is not significantly altered. This study indicates that UK37′ values preserved in the surface sediments off Sakhalin reflect the seasonal temperature signal of near surface water, rather than annual mean surface temperature.  相似文献   

11.
Rabaul tide gauge records from 1968 through 1985 give the amount of vertical movement in the northern part of Rabaul Caldera. Monthly mean sea level data were compared with other regional tide gauge stations to remove large scale oceanographic effects. No large vertical movements (> 0.3 cm/yr) were noted in this portion of the caldera. The results of sea level measurements at other points around the caldera, from 1981 through 1983 are consistent with the 1 to 10 cm of uplift observed on Matupit Island from optical leveling surveys. There was relatively little vertical movement ( 0.1 cm/yr) in the Vulcan area.  相似文献   

12.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

13.
A three-dimensional, nonlinear, primitive equation ocean general circulation model is used to study the response of the Gulf of Mexico to Hurricane Frederic. The model has free surface dynamics and a second order turbulence closure scheme for the mixed layer. Realistic coastlines, bottom topography and open boundary conditions are used in the study. The model has a vertical sigma coordinate with 18 levels, and a horizontal resolution of 0.2°×0.2° for the entire Gulf. The study focuses on hurricane generated sea level, current, and coastally trapped wave (CTW) responses of the Gulf. Time series of sea levels from U.S. coastal tide gauge stations and the numerical model simulation of sea levels and currents on the shelf are used to study sea level, current and CTW responses. Both model sea levels and observations from tide gauge stations show a westward progression of the surge as a CTW response. The results of the study of sea levels and currents indicate that CTW propagate to the west with phase speeds of 7–10 m s–1. There is also a strong nonlinear interaction between the Loop Current and hurricane induced currents. The surface current attains a maximum of 200 cm s–1 in the eastern Gulf. The model surface elevation at several locations is compared with tide gauge data. The current meter data at three moorings are also compared with the model currents. The model simulations show good agreement with observed data for the hurricane induced coastally trapped wave, storm surge, and current distribution in the Gulf.  相似文献   

14.
Temperature data collected over the last 36 years (1969–2004) in Drake Passage are used to examine interannual temperature variation and long-term trends in the upper ocean. To reduce the effect of variation from different sampling locations and temporal variability introduced by meridional shifts in the Polar Front (PF), the data were divided into two sub-regions north (3800 temperature profiles) and south (3400) of the PF. Temperature anomalies were formed by removing a temporal mean field for each profile in each sub-region at 100 m depth intervals from the surface to 700 m. North of the PF, statistically significant warming trends of 0.02 °C yr−1 were observed that were largely depth-independent between 100 and 700 m. A statistically significant cooling trend of −0.07 °C yr−1 was observed at the surface south of the PF, which was smaller (−0.04 °C yr−1) but still statistically significant when possible seasonal sampling biases were accounted for. The observed cooling at the surface and warming at depth is largely consistent with a poleward shift of the PF due to enhancement of westerly winds in the Southern Ocean, as recently suggested by models and observations. The observed annual temperature anomalies in the upper 400 m north of the PF and in the upper 100 m south of the PF are highly correlated to variability in sea ice, and also to climate indices of the Antarctic Oscillation and the El Niño Southern Oscillation. Variability in sea ice and temperature anomalies lag El Niño variability in the Pacific, with a phasing consistent with the observed cyclical patterns of sea ice and sea surface temperature associated with the Antarctic Circumpolar Wave or Antarctic Dipole Mode in the Southern Ocean. In contrast, the sea ice variability and temperature anomalies at all depths north of the PF and at 0–100 m depth south of the PF were primarily coincident with, or led the Antarctic Oscillation Index. No significant correlations were found with the large-scale climate variability indices in southern Drake Passage below 100 m depth, which is occupied by upper Circumpolar Deep Water (uCDW). This water mass is not formed locally, is largely isolated from the surface, and exhibits vertical and lateral homogeneity. Hence changes may be difficult to detect in the available measurements, and climate variation in the source water regions of uCDW may take a long time to reach Drake Passage.  相似文献   

15.
前人在讨论水深对内潮能通量影响的时候得出结论:有限深海洋中海面对内潮的反射使得正压潮向内潮的能量转化相比较无限深海的情况显著降低,对于选定的地形,在无限深海假定下得到的能通量是该地形上内潮能通量的上限。鉴于前人所研究的基本上都是平滑的地形,而实际的海洋地形总是比较粗糙的,本文探讨了粗糙地形上内潮能通量随水深的变化。选取了弦函数地形、随机白噪声地形、弦函数地形叠加在高斯地形之上、随机白噪声地形叠加在高斯地形之上和随机白噪声地形与弦函数地形同时叠加在高斯地形之上5种情况进行了研究,发现对于这5种情况,都存在海洋有限深时的能通量大于无限深假定时的能通量,这说明前人得出的"有限深海洋中海面对内潮的反射使得正压潮向内潮的能量转化相比较无限深海的情况显著降低"的结论对于粗糙地形并不适用。  相似文献   

16.
This study presents a sea-level curve from 9500 to 6500 cal BP for the farfield location of Singapore, on the Sunda Shelf in southeast Asia. The curve is based on more than 50 radiocarbon dates from elevations of +1.43 m to −15.09 m representing sea-level index points in intertidal mangrove and shallow marine sediments deposited by sea-level rise accompanying deglaciation. The results indicate that mean sea level rose rapidly from around −17 m at 9500 cal BP to around −3 m by 8000 cal BP. After this time, the data suggest (but do not unequivocally prove) that the rate of sea-rise slowed for a period of 300–500 years centred on 7700 cal BP, shortly after the cessation of meltwater input to the oceans from the northern hemisphere. Renewed sea-level rise amounting to 3–5 m began around 7400 cal BP and was complete by 7000 cal BP. The existence of an inflection in the rate of sea-level rise, with a slow-down centred on 7700 cal BP, is broadly consistent with other available sea-level curves over this interval and is supported by evidence of stable shorelines and delta initiation elsewhere at this time, as well as evidence of comparatively rapid retreat of the West Antarctic ice sheet beginning around 7500 cal BP. ‘Stepped’ sea-level rise occurring shortly after 7500 cal BP and also earlier during deglaciation may have served to focus significant post-glacial episodes of human maritime/coastal dispersal, into comparatively narrow time intervals.  相似文献   

17.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

18.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

19.
The Southern Ocean hosts significant topographic mixing that might be associated with internal tides. Tidal signals are evident in bottom temperature at 1000 m in Drake Passage, suggesting that internal tides with an amplitude of between ∼20 and 200 m may be present. Various necessary conditions for internal tide generation show that the steep topography in and around Drake Passage can initiate internal tides, and recent global tide models have suggested this region to generate very large interface displacements. Here, we present an attempt to detect internal tides in Drake Passage. During the last 10 years, combinations of bottom pressure recorders and inverted echo sounders have been deployed in the region. The bottom pressure recorders measure predominantly the barotropic tide; the inverted echo sounders measure travel time from sea bed to sea surface and therefore are influenced both by sea level (barotropic tide) and internal sound speed (internal tide). By subtracting one from the other, the internal tide should be detectable. Although the technique works successfully around Hawaii, it does not prove the existence of large internal tides in Drake Passage. The detectability of the internal tidal signal in Drake Passage is investigated using a six-layer one-dimensional model to simulate the bottom pressure and travel time signals of a semi-diurnal tide. The temperature and salinity stratification in Drake Passage is sufficiently weak that large vertical excursions are necessary to produce a signal in travel time detectable above the noise in Drake Passage. An internal tide of at least 70 or 20 m in northern and southern Drake Passage, respectively, would be detected. The fact that these are, perhaps surprisingly, not detected by the combination of bottom pressure and travel time, constrains the internal tides in Drake Passage to be ∼20 m in southern Drake Passage, and between 20 and 70 m in northern Drake Passage. The model also predicts that satellite altimetry would not be able to detect internal tides in Drake Passage, but would in the Brazil Basin and Hawaii regions.  相似文献   

20.
Using the “Eikonal Approach” (Henyey et al., 1986), we estimate energy dissipation rates in the three-dimensional Garrett-Munk internal wave field. The total energy dissipation rate within the undisturbed GM internal wave field is found to be 4.34 × 10−9 W kg−1. This corresponds to a diapycnal diffusivity of about 0.3 × 10−4 m2s−1, which is less than the value 10−4 m2s−1 required to sustain the global ocean overturning circulation. Only when the high vertical wavenumber, near-inertial current shear is enhanced can diapycnal diffusivity reach ∼10−4 m2s−1. It follows that the energy supplied at low vertical wavenumbers and low frequencies is efficiently transferred to high vertical wavenumbers and near-inertial frequencies in the mixing hotspots in the real ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号