首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this research is to assess critically the experimental rate data for O2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σki aij, where ki is the rate constant of species i and aij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, kapp,j ranging from 8.6 × 10−5 to 2.5 × 10−2 (M−1s−1), between pH 8.03 and 9.30, respectively. Observed values of kapp exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M−1s−1) for the most reactive species: MnOH+, 1.66 × 10−2; Mn(OH)2, 2.09 × 101; and Mn(CO3)22−, 8.13 × 10−2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ∼8, the greater fraction of the total rate is carried by MnOH+. At pH greater than ∼8.4, the species Mn(OH)2 and Mn(CO3)22− make the greater contributions to the total rate.  相似文献   

2.
We have performed holographic interferometry measurements of the dissolution of the (0 1 0) plane of a cleaved gypsum single crystal in pure water. These experiments have provided the value of the dissolution rate constant k of gypsum in water and the value of the interdiffusion coefficient D of its aqueous species in water. D is 1.0 × 10−9 m2 s−1, a value close to the theoretical value generally used in dissolution studies. k is 4 × 10−5 mol m−2 s−1. It directly characterizes the microscopic transfer rate at the solid-liquid interface, and is not an averaged value deduced from quantities measured far from the surface as in macroscopic dissolution experiments. It is found to be two times lower than the value obtained from macroscopic experiments.  相似文献   

3.
Weathering rind thicknesses were measured on ∼ 200 basaltic clasts collected from three regionally extensive alluvial fill terraces (Qt 1, Qt 2, and Qt 3) preserved along the Pacific coast of Costa Rica. Mass balance calculations suggest that conversion of unweathered basaltic core minerals (plagioclase and augite) to authigenic minerals in the porous rind (kaolinite, allophane, gibbsite, Fe oxyhydroxides) is iso-volumetric and Ti and Zr are relatively immobile. The hierarchy of cation mobility (Ca ≈ Na > K ≈ Mg > Si > Al > Fe ≈ P) is similar to other tropical weathering profiles and is indicative of differential rates of mineral weathering (anorthite > albite ≈ hypersthene > orthoclase ? apatite). Alteration profiles across the cm-thick rinds document dissolution of plagioclase and augite and the growth of kaolinite, with subsequent dissolution of kaolinite and precipitation of gibbsite as weathering rinds age. The rate of weathering rind advance is evaluated using a diffusion-limited model which predicts a parabolic rate law for weathering rind thickness, rr, as a function of time, t(rr =), and an interface-limited model which predicts a linear rate law for weathering rind thickness as a function of time (rr = kappt). In these rate laws, κ is a diffusion parameter and kapp is an apparent rate constant. The rate of advance is best fit by the interface model.Terrace exposures are confined to the lower reaches of streams draining the Pacific slope near the coast where the stream gradient is less than ∼3 m/km, and terrace deposition is influenced by eustatic sea level fluctuations. Geomorphological evidence is consistent with terrace deposition coincident with sea level maxima when the stream gradient would be lowest. Assigning the most weathered regionally extensive terrace Qt 1 (mean rind thickness 6.9 ± 0. 6cm) to oxygen isotope stage (OIS) 7 (ca. 240 ka), and assuming that at time = 0 rind thickness = 0, it is inferred that terrace Qt 2 (rr = 2.9 ± 0.1 cm) is coincident with stage 5e (ca. 125 ka) and that Qt 3 (rr = 0.9 ± 0.1 cm) is consistent with OIS 3 (ca. 37 ka). These assignments yield a value of kapp of 8.6 × 10−13 cm s−1 (R2 = 0.99). Only this value satisfies both the existing age controls and yields ages coincident with sea level maxima. Using this value, elemental weathering release fluxes across a weathering rind from Qt 2 range from 6.0 × 10−9 mol Si m−2 s−1 to 2.5 × 10−11 mol K m−2 s−1. The rate of rind advance for the Costa Rican terraces is 2.8 × 10−7 m yr−1. Basalt rind formation rates in lower temperature settings described in the literature are also consistent with interface-controlled weathering with an apparent activation energy of about 50 kJ mol−1. Rates of rind formation in Costa Rica are an order of magnitude slower than reported for global averages of soil formation rates.  相似文献   

4.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   

5.
6.
The AlOx1-3 (Ox = oxalate) species were identified in 0.6 M aqueous NaCl by 13C nuclear magnetic resonance (NMR). Rate constants and activation parameters for intramolecular cis/trans isomerization of the Werner-type AlOx2 complex (k(298 K) = 5 s−1, ΔH# = 67 ± 5 kJ mol−1, ΔS# = −6 ± 6 J mol−1 K−1, the rate determining step could be the breaking of the Al-O(C=O) bond) and a very slow intermolecular ligand exchange reaction of AlOx33− complex and the free ligand (k30(298 K) = 6.6 · 10−5 s−1, ΔH# = 164 ± 17 kJ mol−1, ΔS# = 225 ± 51 J mol−1 K−1, D/Id mechanism) were determined by dynamic 1D and 2D 13C NMR measurements. Mixed complexes, AlFOx, AlFOx22-, AlF2Ox, and AlF2Ox23-, with overall stability (logβ) of 11.53 ± 0.03, 15.67 ± 0.03, 15.74 ± 0.02, and 19.10 ± 0.04 were measured by potentiometry using pH- and fluoride-selective electrodes and confirmed by 13C and19F NMR. The role of these complexes in gibbsite dissolution was modeled. The mixed Al(III)-Ox2--F complexes have to be considered as the chemical speciation of Al(III) in natural waters is discussed.  相似文献   

7.
The dissolution kinetics of shallow water marine carbonates (low-Mg calcite, aragonite and Mg-calcites) were investigated in seawater (S = 35) at 25°C and a PCO2 of 10?2.5 atm. using the pH-stat method. Carbonate dissoluton rates (μmoles g?1 hr?1) fit the empirical kinetic expression, R = k(1 - Ω)n, where R = dissolution rate, k = rate constant, Ω = saturation state, and n = order of reaction. Reaction orders were near 2.9 for low-Mg calcites, 2.5 for aragonites and 3.4 for Mg-calcites.The rate constant, k, expressed as μmoles g?1 hr?1, varied by nearly a factor of ten for the different samples, reflecting differences in amount of reactive surface area. Reactive surface area of the biogenic phases ranged from 0.3% to 66% of the total surface area determined by the BET gas adsorption method. The discrepancy between reactive and total surface area was greatest for samples with high BET surface areas (> 1 m2 g?1) and delicate microstructures.Relative dissolution rates of the various biogenic carbonates as a function of seawater calcium carbonate ion molal product (IMP) were related to both mineral stability and grain microstructure. In seawater undersaturated with respect to aragonite, finely crystalline aragonites dissolved more rapidly than thermodynamically less stable high Mg-calcites (15–18 mole% MgCO3) with lower reactive surface areas. Therefore, under certain conditions, differences in grain microstructural complexity can override thermodynamic constraints and lead to selective dissolution of a thermodynamically more stable mineral phase.  相似文献   

8.
In situ Atomic Force Microscopy, AFM, experiments have been carried out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated on calcite surfaces and, subsequently, the overall dissolution rates: i.e., from 10−11.75 mol cm−2 s−1 (in deionized water) up to 10−10.54 mol cm−2 s−1 (in 2.8 M MgSO4). Such an effect is concentration-dependent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play a critical role in the chemical weathering of carbonate rocks in nature as well as in the decay of carbonate stone in buildings and statuary.  相似文献   

9.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   

10.
We have measured the surface controlled dissolution rates of natural calcium carbonate minerals (limestone and marble) in H2O–CO2 solutions by using free drift batch experiments under closed system conditions with respect to CO2, at 10°C with an initial partial pressure of carbon dioxide of 5 · 10−2 atm. All experiments revealed reaction rates F, which can be described by the empirical relation: Fn1 = kn1 · (1 − c/ceq)n1 for c < cs, which switches to a higher order n2 for calcium concentrations c ≥ cs described by Fn2 = kn2 · (1 − c/ceq)n2. kn1 and kn2 are rate constants in mmole/(cm2 · s), ceq is the equilibrium concentration with respect to calcite. The values of the constants n1, n2, kn1, kn2 and cs depend on the V/A ratio employed, where V is the volume of the solution and A is the surface area of the reacting mineral. Different calcium carbonate minerals exhibit different values of the kinetic constants. But generally with increasing V/A, there is a steep variation in the values of all kinetic constants, such that the rates are reduced with increasing V/A ratio. Finally with sufficiently large V/A these values become constant. These results are explained by assuming intrinsic inhibitors in the bulk of the mineral. During dissolution these are released from the calcite matrix and are adsorbed irreversibly at the reacting surface, where they act as inhibitors. The thickness d of the mineral layer removed by dissolution is proportional to the V/A ratio. The amount of inhibitors released per surface area is given by d · cint, where cint is their concentration in the bulk of the mineral. At low thicknesses up to ≈3 · 10−4 cm in the investigated materials, the surface concentration of inhibitors increases until saturation is attained for thicknesses above this value.To analyze the surface concentration and the type of the inhibitors we have used Auger spectroscopy, which revealed the presence of aluminosilicate complexes at the surface of limestone, when a thickness of d ≈ 10−3 cm had been removed by dissolution. In unreacted samples similar signals, weaker by one order of magnitude, were observed. Depth profiles of the reacted sample obtained by Ar-ion sputtering showed the concentration of these complexes to decrease to the concentration observed in the unreacted sample within a depth of about 10 nm. No change of the concentration with depth was observed in unreacted samples. These data suggest that complexes of aluminosilicates act as inhibitors, although other impurities cannot be excluded.  相似文献   

11.
Brucite (Mg(OH)2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H2PO4 > catechol ≥ HCO3 > ascorbate > citrate > oxalate > acetate ∼ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO43−, CO32−, F, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO42− and B(OH)4 with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation.The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.  相似文献   

12.
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 μm were dissolved in pH 3, HCl at 25 °C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 × 10−10 molfeldspar m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 × 10−10 molfeldspar m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 molfeldspar g−1 s−1. For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 × 10−12 molbiotite m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 × 10−12 molbiotite g−1 s−1. For all normalising terms rates varied significantly (p ? 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over which they would change significantly.  相似文献   

13.
Dissolution rates of limestone covered by a water film open to a CO2-containing atmosphere are controlled by the chemical composition of the CaCO3-H2O-CO2 solution at the water-mineral interface. This composition is determined by the Ca2+-concentration at this boundary, conversion of CO2 into H+ and in the solution, and by diffusional mass transport of the dissolved species from and towards the water-limestone interface. A system of coupled diffusion-reaction equations for Ca2+, , and CO2 is derived. The Ca2+ flux rates at the surface of the mineral are defined by the PWP-empirical rate law. These flux rates by the rules of stoichiometry must be equal to the flux rates of CO2 across the air-water interface. In the solution, CO2 is converted into H+ and . At low water-film thickness this reaction becomes rate limiting. The time dependent diffusion-reaction equations are solved for free drift dissolution by a finite-difference scheme, to obtain the dissolution rate of calcite as a function of the average calcium concentration in the water film. Dissolution rates are obtained for high undersaturation. The results reveal two regimes of linear dissolution kinetics, which can be described by a rate law F = αi(miceq − c), where c is the calcium concentration in the water film, ceq the equilibrium concentration with respect to calcite. For index i = 0, a fast rate law, which here is reported for the first time, is found with α0 = 3 × 10−6 m s−1 and m0 = 0.3. For c > m0ceq, a slow rate law is valid with α1 = 3 × 10−7 m  s−1 and m1 = 1, which confirms earlier work. The numbers given above are valid for film thickness of several tenths of a millimetre and at 20 °C. These rates are proven experimentally, using a flat inclined limestone plate covered by a laminar flowing water film injected at an input point with known flow rate Q and calcium concentration. From the concentration measured after flow distance x the dissolution rates are determined. These experiments have been performed at a carbon-dioxide pressure of 0.00035 atm and also of 0.01 atm. The results are in good agreement to the theoretical predictions.  相似文献   

14.
Triplicate porewater lead concentration profiles were determined on six occasions in a Canadian Shield lake. Total Pb concentrations were also measured in a dated core obtained at the same site. This information, as well as an extensive dataset comprising ancillary geochemical measurements on porewaters and sediment and the population densities of benthic animals, is used in a one-dimensional transport-reaction diagenetic model to investigate the transport and mobilization of Pb in these sediments. Application of the model consistently indicates the presence of a zone of Pb production to the porewaters that lies above a zone of Pb consumption. The profiles of various porewater constituents and thermodynamic calculations indicate that Pb is mobilized in the zone of production by the reductive dissolution of iron oxyhydroxides, whereas it is removed in the zone of consumption by precipitation as a solid sulfide. Rate constants are estimated for reductive iron dissolution (kdFe(III) = 2.0 ± 0.5 × 10−1 cm3 mol−1 s−1), Pb adsorption on iron oxyhydroxides (kadsPb = 98 ± 55 cm3 mol−1 s−1), and Pb precipitation (kpptPb = 8 × 10−20 mol cm−3 s−1 to 16 ± 13 × 10−22 mol cm−3 s−1, depending on the solubility product assumed for the precipitation of PbS). According to model calculations, diagenetic processes, such as remobilization, molecular diffusion, bioturbation, and bioirrigation have a negligible influence on the solid phase Pb profile. In agreement with this finding, the present-day fluxes of dissolved Pb by diffusion (JDPb = −6.5 × 10−11 mol cm−2 yr−1), bioturbation (JBPb = −1.1 × 10−13 mol cm−2 yr−1), and bioirrigation (JIPb = −1.5 × 10−11 mol cm−2 yr−1) are small compared to the flux of Pb deposited with settling particles (JSPb = 5.3 × 10−9 mol cm−2 yr−1).  相似文献   

15.
Far from equilibrium enstatite dissolution rates both open to atmospheric CO2 and CO2 purged were measured as a function of solution pH from 8 to 13 in batch reactors at room temperature. Congruent dissolution was observed after an initial period of incongruent dissolution with preferential Si release from the enstatite. Steady-state dissolution rates in open to atmospheric CO2 conditions decrease with increase in solution pH from 8 to 12 similar to the behavior reported by other investigators. Judging from the pH 13 dissolution rate, rates increase with pH above pH 12. This is thought to occur because of the increase in overall negative surface charges on enstatite as Mg surface sites become negative above pH 12.4, the pH of zero surface charge of MgO.Steady-state dissolution rates of enstatite increase above pH 10 when CO2 was purged by performing the experiments in a N2 atmosphere. This suggests inhibition of dissolution rates above pH 10 when experiments were open to the atmosphere. The dissolved carbonate in these solutions becomes dominantly CO32− above pH 10.33. It is argued that CO32− forms a >Mg2-CO3 complex at positively charged Mg surface sites on enstatite, resulting in stabilization of the surface Si-O bonds. Therefore, removal of solution carbonate results in an increase in dissolution rates of enstatite above pH 10. The log rate of CO2-purged enstatite dissolution in moles per cm2 per s as a function of increasing pH above pH 10 is equal to 0.35. This is consistent with the model of silicate mineral dissolution in the absence of surface carbonation in alkaline solutions proposed earlier in the literature.  相似文献   

16.
The dissolution of well crystallized gibbsite far at from equilibrium was studied in batch and mixed flow through reactors. The dissolution experiments were carried out between pH 2 and 6 in the presence of 10 mmol L−1 citrate, at pH 2 and 3 in the presence of 10 mmol L−1 chloride, nitrate, and sulfate, and at pH 2 and 3 in the presence of 1.5 mmol L−1 silica at 20°C. The dissolution rate of gibbsite, RAl (mol m−2 s−1), increases in the order of chloride ≈ nitrate < silica < sulfate ≈ citrate. In presence of silica, sulphate, and citrate dissolution is catalysed by the formation of aluminium complexes at the gibbsite surface (pH 2 and 3). From pH 2 to 3 no effect of RAl on hydrogen activity is predicted as singly coordinated surface sites at the edges of the platy gibbsite crystals, [≡AlOH2+0.5] ≈ [≡AlOH], are almost saturated with protons. However at pH >3 dissolution is slowed by a decrease of [≡AlOH2+0.5].Gibbsite dissolution rates measured in closed and open systems were identical within the experimental and analytical uncertainty. This observation indicates that gibbsite dissolution is a surface controlled process. If dissolution of gibbsite occurs close to equilibrium RAl values may be predicted by an approximately linear function of ΔGr.  相似文献   

17.
Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, ΔGr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH(150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between ΔGr and R was determined over a free energy range of −150 < ΔGr < −15.6 kJ mol−1. The data define a continuous and highly non-linear, sigmoidal relation between R and ΔGr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by −150 < ΔGr < −70 kJ mol−1, represents an extensive dissolution rate plateau with an average rate . In this free energy range the rates of dissolution are constant and independent of ΔGr, as well as [Si] and [Al]. The free energy range delimited by −70 ? ΔGr ? −25 kJ mol−1, referred to as the ‘transition equilibrium’ region, is characterized by a sharp decrease in dissolution rates with increasing ΔGr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by ΔGr > −25 kJ mol−1, represents the ‘near equilibrium’ region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on ΔGr. The lowest rate measured in this study, R = 6.2 × 10−11 mol m−2 s−1 at ΔGr = −16.3 kJ mol−1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions
R=k1[1-exp(-ngm1)]+k2[1-exp(-g)]m2,  相似文献   

18.
Four porous, glass-dominated rhyolites from Kozushima Island, different in age and extent of weathering, were studied. Because the four rhyolites are homogeneously weathered to considerable depth, and because their initial chemical compositions were equal, the different rock characteristics can provide information about rates of rhyolite dissolution and clay mineral formation over ∼52,000 yr. Because glass surfaces retreat without surface roughening, surface area (measured by Brunauer-Emmett-Teller method; BET) was assumed to be approximately constant over time. The field dissolution rate, as inferred from the rate of loss of Si, was ∼6 × 10−19 mol cm−2 s−1. The estimated clay mineral formation rate was ∼1 × 10−19 mol cm−2 s−1. About 20% of dissolved Si precipitated as clays. In order to investigate the factors affecting the field dissolution rate, dissolution experiments that used powdered and block rhyolite samples were conducted. Under relevant field conditions (20°C and pH 6∼7), the rates were ∼5 × 10−17 and ∼5 × 10−18 mol cm−2 s−1 for powdered rhyolite and blocks, respectively. The dissolution rates obtained in this study decrease in the order powder > block > field. Because all surface areas were directly measured by BET, the differences are not attributable to the errors in surface area. The most plausible explanations of the slower rates are the lower degree of flushing and resultant high-solution saturation states in the pores (both in the field and in the rhyolite blocks used in experiments) plus the formation of alteration/hydrated layers at the glass surface.  相似文献   

19.
20.
Dissolution experiments on a serpentinite were performed at 70 °C, 0.1 MPa, in H2SO4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 °C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 × 10−10 mole m−2 s−1 to 4.2 × 10−9 mole m−2 s−1. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH4- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 °C using 100 g L−1 NaCl aqueous solutions. The corresponding amount of CO2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 × 10−11 mole m−2 s−1 to 1.3 × 10−10 mole m−2 s−1) is lower than that obtained at 0.1 MPa and 70 °C but it is related to pH values much higher (3.3-4.4) than that (−0.65) calculated for the H2SO4 solution.Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i) the log rate [mole m−2 s−1] value of −12.08 ± 0.16 (1σ), as representative of the neutral dissolution mechanism at 25 °C and (ii) the following relationship for the acidic dissolution mechanism at 25 °C:
log rate=-0.45(±0.09)×pH-10.01(±0.30).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号