首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cenozoic magmatic rocks of shoshonitic series in the easternQinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.  相似文献   

2.
The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt,both characterized by the lower SiO2 (51%―54%),high refractory elements (i.e. Mg,Cr,Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE,i.e. Nb,Ta,Ti). Be-sides,the fairly low Sm/Yb value (3.07―4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383),and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = 0.02 to -0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 ,△7/4Pb = 9.88 to 11.42,△Sr>50,implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area,this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block,and induced its partial melting,and then the melt under-plated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.  相似文献   

3.
Many researchers have focused on the tectonic evolution of North Qilian Mountains (NQM) since the 1970s[1―7]. However, the tectonic affinity of the an- cient oceanic mantle in early Paleozoic remains in de-bate. Three general explanations for it have been pro- posed. The first one suggests that the ancient ocean was a part of Proto-Tethys, and the tectonic evolution of NQM should be regarded as a portion of the562 Science in China: Series D Earth Sciences Tethyan tectonic domain[1]. …  相似文献   

4.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

5.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

6.
There are wide spread Cenozoic volcanic rocks in Tengchong (CVRT), Yunnan province, SW China. These rocks comprise three rock types: basalt, andesite (dominant type) and dacite. Most samples are sub‐alkaline, and among the sub‐alkaline rocks, most are high‐K calc‐alkaline. These rocks have a SiO2 range of 49.1 wt.% to 66.9 wt.%. TiO2 contents are not high and have a variation of 0.7 wt.%–1.6 wt.%. Trace element concentrations and element ratios (such as Nb/U, Ce/Pb, Nb/La, etc.) of these rocks have a large variation. 87Sr/86Sr values fall in the range of 0.7057–0.7093 and 143Nd/144Nd values change from 0.5120 to 0.5125. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are in the range of 17.936–19.039, 15.614–15.810, and 38.894–39.735, respectively. These geochemical characteristics of CVRT make them resemble island‐arc volcanic rocks. We suggest that the magmas were generated in the lithospheric mantle that had already been metasomatized by previous subduction processes. By the study of the uplift history of the Tibetan Plateau, we found that the beginning of the geotectonic processes to the eruption of CVRT was coeval with one uplift event. Therefore, we propose that the uplift of the Tibetan Plateau caused collapse of the collisional orogeny in Tengchong, which further triggered the generation and eruption of the CVRT magmas.  相似文献   

7.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

8.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

9.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

10.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

11.
Sr- and Pb-isotope compositions and Rb, Sr, Ce, Nd and K2O contents have been determined for the Iblean Mountain and Mt. Etna volcanics in eastern Sicily. Isotope variations within each of these regions have been interpreted as reflecting the heterogeneous nature of the source regions in the upper mantle. The87Sr/86Sr ratios of all these volcanics are less than 0.705, which is taken to indicate that their source regions evolved with lower Rb/Sr ratios than the bulk earth.87Sr/86Sr and Ce/Nd ratios determined in the Mt. Etna tholeiites are positively correlated suggesting that fractionation(s) in Rb/Sr are accompanied by fractionation(s) in light REE in the source regions of these volcanics. Pb-isotope compositions form a linear array in the207Pb/204Pb-206Pb/204Pb plot which has a negative age slope. This array represents either a very recent U/Pb fractionation in the source regions, or a mantle mixing line. Imperfect correlation between the Sr- and Pb-isotope compositions of these volcanics suggests that U/Pb and Rb/Sr have not always increased or decreased in unison during the differentiation of these source regions.  相似文献   

12.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

13.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

14.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

15.
Volcanic and hypabyssal rocks ranging in age from 12 to 3 Ma from the Fernando de Noronha archipelago in the western equatorial Atlantic Ocean can generally be divided into two age-compositional groups that have variable and distinct isotopic compositions. Predominantly older alkali basalts and trachytes are generally characterized by more radiogenic Sr-isotopic (87Sr/86Sr= 0.70457–0.70485) compositions and less radiogenic Nd-isotopic (143/Nd144Nd= 0.51271–0.51281) and Pb-isotopic (206Pb/204Pb= 19.132–19.282) compositions relative to the generally younger, more alkaline Si-undersaturated rocks which include nephelinites, ankaratrites, and melilitites (87Sr/86Sr= 0.70365–0.70418,143Nd/144Nd= 0.51277–0.51290,206Pb/204Pb= 19.317–19.565). These variations suggest the influence of at least two separate components in the source(s) of both series. One component is characterized by highRb/Sr and low μ, possibly derived from delaminated subcontinental lithosphere, whereas the other has high μ and lowRb/Sr similar to the source of St. Helena lavas. A third component is suggested by correlated compositions in the latest alkaline, Si-undersaturated lavas, and this component may be derived from depleted mantle. These isotopic variations in conjunction with the generally increasing degree of alkalinity with time are consistent with the temporal depletion of a low-μ, highRb/Sr component and increasing contributions from a high-μ component in the sources of the volanic rocks of Fernando de Noronha.  相似文献   

16.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

17.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

18.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

19.
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are characterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first observed that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical characters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional mafic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.  相似文献   

20.
Analyses for major and trace elements, including REE, and Sr, Nd and Pb isotopes are reported from a suite of Siluro-Devonian lavas from Fife, Scotland. The rocks form part of a major calc-alkaline igneous province developed on the Scottish continental margin above a WNW-dipping subduction zone. Within the small area (ca. 15 km2) considered, rock types range from primitive basalts and andesites (high Mg, Ni and Cr) to lavas more typical of modern calc-alkaline suites with less than 30 ppm Ni and Cr. There is a marked silica gap between these rocks (< 62%) and the rare rhyolites (> 74%), yet the latter can be generated by fractional crystallization from the more mafic lavas. In contrast, variation in incompatible element concentrations and ratios in the mafic lavas can not be generated by fractional crystallization processes. Increasing SiO2 is accompanied by increasing Rb, K, Pb, U and Ba relative to Sr and high field strength elements, increasing LREE enrichment and increasing Sr calculated at 410 Ma, and by decreasing HREE, Eu/Eu*, Sm/Nd and Nd (410). Nd and Sr are roughly anticorrelated and have more radiogenic compositions than the mantle array, in common with data reported elsewhere from this part of the arc. The correlation extrapolates up to cross the mantle array within the composition field of the contemporary MORB source, and extrapolates down towards the probable compositional range of Lower Palaeozoic greywackes, which may form the uppermost 8 km of the crust, or may be supplied to the source by subduction. One sample, however, lies within the mantle array, and closely resembles lavas from northwestern parts of the arc, where a mantle source with mild time-integrated Rb/Sr and LREE enrichment has been inferred. The lavas have relatively high initial 207Pb/204Pb for their 206Pb/204Pb, a feature which has been interpreted elsewhere as the result of incorporation of a sediment component into arc magmas. The systematic changes with increasing SiO2 in isotopic and chemical parameters can be explained by mixing of a greywacke-derived component with depleted mantle. The various possible mixing mechanisms are discussed, and it is considered most likely that mixing occurred in the mantle source through greywacke subduction. The bulk of the Rb, K, Ba and Pb in the lavas is probably recycled from the crust, whereas less than some 40% of the Sr and Nd is recycled. The calc-alkaline chemical trends are solely a function of mixing with the sediment component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号