首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
—The specific barrier model is used for the first time to simulate ground motion accelerations for the purpose of probabilistic seismic hazard analyses at sites near a dominant fault system. It incorporates the simulation of fault geometry and the relationship between the stress drop and seismic moment to estimate the number of cracks on the fault for the specific barrier model. Radiated direct shear waves are established following Boore’s (1983) procedure. The simulated peak ground accelerations (PGA) are then calibrated by strong-motion data. Basically, the model is of uniform source, and the directivity of the source is not taken into consideration. The results show that the calibrated PGA values are not sensitive to the relationship between the stress drop and seismic moment. However, the calibrated PGA values may increase about 20 percent for sites near the fault when the cut-off frequency,?f max?, is raised from 5 Hz to 10 Hz. The variability of the simulated ground motion is, in general, smaller than that of the empirical strong-motion data shown in the literature. This may be improved by adding randomness into the parameter of ?f max and uncertainties into the empirical relationships adopted in the model. The simulated attenuation curves may be used to judge which types of conventional attenuation equations are better at representing the attenuation of PGA for sites near the fault, especially for large earthquake events.  相似文献   

2.
We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities inferred from the very-near-field ground motion particle motions, and another dynamic source model with conjugate fault segments. The ground motions are calculated for an available 3D geological model using a finite-difference method. For the comparison, we apply a goodness-of-fit score to the ground motion parameters at different stations, including the nearest one that is almost directly above the ruptured fault segments. The dynamic rupture models show good performance. We find that seismologically inferred earthquake asperities on a single fault plane can be expressed with two conjugate segments. The rupture transfer from one segment to another can generate a significant radiation; this could be interpreted as an asperity projected onto a single fault plane. This example illustrates the importance of the fault geometry that has to be taken into account when estimating the very-near-field ground motion.  相似文献   

3.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

4.
5.
断层带附近地震动场分布的研究,是当前地震工程领域研究的热点问题之一。近断层地震动场的分布对在断层附近进行抗震结构设计时,不仅是提供地震动输入,也是确定建设场地避让范围的重要依据之一。以区域地震构造背景分析、目标断层活动性鉴定、地震危险性评价为基础,结合断层探测结果,利用统计经验关系等最终确定发震断层,并建立相应的震源模型。采用显式有限元和并行计算技术计算目标区域场地的长周期地震动。利用有限断层随机合成的方法,计算高频地震动。将低频和高频地震动合成为目标区域内的宽频带地震动时程。对局部特殊场地条件地区,基于场地调查和勘探的数据,利用等效线性化等方法进行一维土层的非线性反应计算,给出这些特殊场地的宽频带地震动时程。最后,根据地震动时程获得设定地震发生时,目标区域的峰值加速度分布预测图和相应的反应谱。以长春市为例预测了在设定地震发生时,近断层地震动场的分布情况。当长春尖山子—卡伦断层发生6.0级地震时,潜在破坏性地震动的影响范围集中在附近,沿断层走向分布。加速度峰值沿断层垂直变化,主要为90 Gal~140 Gal。只是在长春市南部加速度峰值达到200 Gal。本研究的预测结果具备断层附近地震动的一些最基本的特征,符合当前对断层附近地震动的基本认识。  相似文献   

6.
Dense strong motion observation networks provided us with valuable data for studying strong motion generation from large earthquakes. From kinematic waveform inversion of seismic data, the slip distribution on the fault surface of large earthquakes is known to be spatially heterogeneous. Because heterogeneities in the slip and stress drop distributions control the generation of near-source ground motion, it is important to characterize these heterogeneities for past earthquakes in constructing a source model for reliable prediction of strong ground motion. The stress changes during large earthquakes on the faults recently occurring in Japan are estimated from the detailed slip models obtained by the kinematic waveform inversion. The stress drops on and off asperities are summarized on the basis of the stress change distributions obtained here. In this paper, we define the asperity to be a rectangular area whose slip is 1.5 or more times larger than the average slip over the fault according to the previous study for inland crustal earthquakes. The average static stress drops on the asperities of the earthquakes studied here are in the range 6?C23?MPa, whereas those off the asperities are below 3?MPa. We compiled the stress drop on the asperities together with a data set from previous studies of other inland earthquakes in Japan and elsewhere. The static stress drop on the asperity depends on its depth, and we obtained an empirical relationship between the static stress drop and the asperity??s depth. Moreover, surface-breaking asperities seemed to have smaller stress drops than buried asperities. Simple ground motion simulations using the characterized asperity source models reveal that deep asperities generate larger ground motion than shallow asperities, because of the different stress drops of the asperities. These characteristics can be used for advanced source modeling in strong ground motion prediction for inland crustal earthquakes.  相似文献   

7.
The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.  相似文献   

8.
风化半圆形河谷对柱面SH波的散射解析解   总被引:1,自引:0,他引:1       下载免费PDF全文
风化河谷地震效应对建在此类场地上工程结构(如大坝、桥梁)的动力稳定性具有潜在的威胁,为揭示河谷风化层对地面运动的影响,利用波函数展开法推导风化半圆形河谷对线源柱面SH波散射问题的解析解。计算不同震源位置条件下风化半圆形河谷的地表位移反应和地面运动放大因子,分析地面运动的幅值和形态,发现随着震源距离的增大,在河谷附近地震动的放大和衰减的交替更频繁。  相似文献   

9.
In this study, source parameters of the September 18, 2011 M w 6.9, Sikkim earthquake were determined using acceleration records. These parameters were then used to generate strong motion at a number of sites using the stochastic finite fault modeling technique to constrain the causative fault plane for this earthquake. The average values of corner frequency, seismic moment, stress drop and source radius were 0.12 Hz, 3.07 × 1026 dyne-cm, 115 bars and 9.68 km, respectively. The fault plane solution showed strike-slip movement with two nodal planes oriented along two prominent lineaments in the region, the NE-oriented Kanchendzonga and NW-oriented Tista lineaments. The ground motions were estimated considering both the nodal planes as causative faults and the results in terms of the peak ground accelerations (PGA) and Fourier spectra were then compared with the actual recordings. We found that the NW–SE striking nodal plane along the Tista lineament may have been the causative fault for the Sikkim earthquake, as PGA estimates are comparable with the observed recordings. We also observed that the Fourier spectrum is not a good parameter in deciding the causative fault plane.  相似文献   

10.
The efficacy of various ground motion intensity measures (IMs) in the prediction of spatially distributed seismic demands (engineering demand parameters, (EDPs)) within a structure is investigated. This has direct implications to building‐specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common IMs are investigated in terms of their ability to predict the spatially distributed demands in a 10‐storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion that controls the IM and that of the EDP. An IMs predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IMs investigated were found to be insufficient with respect to at least one of magnitude, source‐to‐site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10‐storey reinforced concrete frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such a spatially distributed demands without significant bias. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Introduction In the study of ground motion attenuation model the considered parameters are generally sim-plified as ground motion parameters (acceleration, velocity, displacement, response spectrum, dura-tion, etc), earthquake magnitude, distance and site condition. As the accumulation of ground motion records, it was found that the characteristic of ground motion attenuation in tectonicly compressional region was different from that in tectonicly tensional region and the peak ground accelerat…  相似文献   

12.
A semi-empirical approach using fore- or after-shockrecords as Green's functions is applicable to thesimulation of strong ground motion, however suchrecords are obviously not available for predictionpurposes. Thus we have predicted ground motion fora hypothetical large earthquake from other minorevents by adopting a distance correction based ongeometrical spreading. Another difficulty inprediction is fault modeling. Surface traces weresimplified as fault models 27, 46, 55, and 77 km inlength. Further, the actual fault rupture may beinhomogeneous, so an asperity distribution isassumed. This asperity model assumes thatdislocation and stress drop are double than theaverage values. Although, the near field term isneglected in our simulation, no significantdifference was seen in the motions estimated byindividual models for periods up to 2.0 seconds. This indicates that the dependence of source size issmall for strong motion, perhaps as a result of therandom summation of high-frequency phases.  相似文献   

13.
基于显式有限元方法和运动学震源模型并利用昆明盆地三维地下构造模型,本文研究了震源参数对断层附近长周期地震动的影响.结果表明,断层的破裂方式、埋藏深度、破裂速度以及断层面上位错的不均匀分布对断层附近长周期地震动有重要影响.不同破裂方式下,破裂的方向性强的区域分布不同,由于破裂的方向性效应和复杂场地条件的共同作用,导致不同破裂方式的断层附近地震动分布差别很大.随着破裂速度的增加,方向性效应更加明显,断层附近的长周期地震动也随之增大;对于浅源地震,随着断层埋深的增加,地震动明显下降.对于埋藏深度很浅的断层,当Asperity靠近断层上沿时,会显著增大其在地表投影附近的长周期地震动.能否合理地估计这些基本震源参数,是预测未来发震断层周围地震动场的关键.  相似文献   

14.
An endeavor is made to compute peak ground horizontal accelerations at bedrock level in the Delhi region due to the seismogenic sources present around Delhi. The entire area is divided into six seismogenic sources for which seismic hazard analysis is carried out using the complete and extreme part of the seismicity data. Maximum likelihood estimates of hazard parameters viz., seismic activity rate , b value and maximum probable earthquake M max are made for each zone. The return periods and the probabilities of occurrence of various magnitudes for return periods of 50, 100 and 1000 years are also computed for each zone. The peak ground acceleration (PGA) values for 20% exceedance in 50 years are then computed for the Delhi region from each zone. The maximum PGA value considering all the zones is 0.34 g, which is due to the Mathura fault zone. The seismogenic zones V and VI, i.e., Mathura fault zone and the Sohna fault zone are observed to be contributing maximum PGA values in the Delhi region governing the isoacceleration contours computed for the region. The seismic zonation map for the PGA values at the bedrock level is obtained for the Delhi region. This can be used directly as input for the microzonation of ground motion at the surface by incorporating the local site conditions.  相似文献   

15.
For seismic hazard assessment, we study the variabilities of predicted ground motion on the basis of a ??recipe for predicting strong ground motion?? and propose approximations to evaluate spatial distributions of the standard deviation for PGV, R1.0, R2.0, and R5.0 in the estimated ground motions. For strong-motion prediction, we use a finite difference method for a long period range (>1.0?s). To estimate variabilities, a Monte Carlo simulation is used and we adopt the Latin Hypercube Sampling (LHS) technique to reduce computations. In this article, we consider only aleatory variabilities in source parameters among all possible variabilities, such as those in the source parameters, the propagation characteristics and site characteristics. Model sources are assumed for dip-slip fault and strike-slip fault, and the variabilities are considered for parameters such as asperity location, rupture starting point, average asperity slip contrast, stress drop and rupture velocity. On the target site, 100 instances of PGV, R1.0, R2.0 and R5.0 data are obtained for 100 sets of parameters and an average and a standard deviation of the log normal distribution, corresponding to the variability for ground motion estimation, are statistically analyzed. For all target sites uniformly distributed in the area around the faults, the average and the standard deviation are statistically analyzed and spread to spatial maps. It is found that the spatial distributions of standard deviation values for both the dip-slip and strike-slip faults are not uniform. Approximations are attempted to develop a quantitative evaluation for spatial distributions of the standard deviation of the log normal distribution for PGV, R1.0, R2.0, and R5.0. The spatial distributions by these approximations are considered to almost reconstruct the characteristics, which are statistically analyzed by the finite difference method.  相似文献   

16.
The seismic hazard potential for metropolitan of Damascus, Syria is mainly controlled by earthquakes along Serghaya Fault which is a branch of Dead Sea Fault System. In this study, strong ground motion due to the November 1759 Earthquake along the fault of Serghaya was estimated with a numerical simulation technique. In the simulation, the Kostrov-like slip-velocity function was used as an input to the discrete wave number method to simulate the strong ground motions in a broadband frequency range. In order to model the incoherent rupture propagation which can excite large high-frequency waves, random numbers are added to arrival time of circular rupture front. MMI intensities calculated from the synthetic ground motions are compared with the observed values by Ambraseys and Barazangi (J Geophys Res 94:4007-4013, 1989). The calculated intensities are in good agreement with the observed ones at the most sites that validate appropriateness of the proposed source model. The PGA and PGV in the eastern region of Damascus city are higher than those in the western region due to the effects of local site amplification. The simulated high-frequency (1.0–6.0 Hz) ground motions for the sites in the Damascus city are higher than the design requirements defined by the Syrian building code. Furthermore, the simulated high-frequency ground motions for sites in the focal region are bigger than the design requirements in the case of the near-fault factors and are not considered. That demonstrates the appropriateness of considering the near-fault factors for a site near the focal region as introduced by the new building code.  相似文献   

17.
This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty (T?=?0.1?s) and when it is filled with water to its maximum capacity (T?=?0.22?s). Additionally, seismic hazard analysis is done for two return periods: 975?years, related to the project earthquake, and 4,975?years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA (T) of T?=?0.1 and 0.22?s for the return periods of 975 and 4,975?years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.  相似文献   

18.
2010年4月4日墨西哥Baja地区发生Mw7.2地震,2人遇难;同年4月14日中国青海省南部玉树地区发生Mw6.9地震,截至2010年4月25日,已造成2220人遇难.有报道指出,玉树地震矩震级小于Baja地震,人员伤亡却远大于后者,主要原因在于玉树地区抗震设防标准低、建筑物抗震性能差.地震造成破坏程度的大小并非仅仅...  相似文献   

19.
在北京工业大学振动台台阵系统上开展了一系列锯末混合土地基自由场振动台模型试验,试验中模型箱采用装配式连续体刚性模型箱,试验中输入地震动时程采用El Centro地震动记录、Taft地震动记录和天津地震动记录,地震动输入方向分为水平单向和水平双向。文中,重点考察了双向地震动输入下锯末混合土模型场地的动力特性及其变化规律,主要指标包括模型场地地震动反应的峰值加速度及其动力放大系数、加速度时程及其傅氏谱。试验结果表明:随着输入地震动强度的增大,同一测点反应的峰值加速度总体上在增大,而其加速度动力放大系数总体上呈现减小的趋势,反应的频谱组成从较高频率向较低频率移动;双向地震作用下锯末混合土模型场地的动力变化规律与单向地震作用下较为一致。  相似文献   

20.
地震动参数衰减关系描述了地震动参数随震级和距离等因素的变化情况,选取合适的地震动衰减关系是地震危险性分析中确定工程场地地震动参数的关键环节。本文收集、整理和分析了中国西部地区2012年3月9日—2017年9月16日间发生的42次地震事件中获取的强震动记录资料,并选择了3个国际上基于不同地区强震动记录数据建立的地震动加速度衰减关系(ASB11、SCEMY97和LLCS11),开展了加速度衰减关系计算结果与中国西部强震动记录值的对比研究。比较了衰减关系峰值加速度的预测中值与实际记录值之间的差异,并分析了其残差随震级和距离的变化。得到了以下结论:①相比于SCEMY97和LLCS11,ASB11更适合于中国西部地区;②研究中国西部地区的衰减关系时,有必要考虑高频地震动的震级饱和现象。同时,对于如何修正已有衰减关系以使其更适合于中国西部地区给出了相应的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号