首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
地球物理   6篇
地质学   1篇
天文学   2篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  1992年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈?1?–?15 keV with resolution ≈?0.4 keV. SphinX was flown on the Russian CORONAS–PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.  相似文献   
3.
Data on temporal variability in Mg isotope ratios of atmospheric deposition and runoff are critical for decreasing the uncertainty associated with construction of isotope mass balances in headwater catchments, and statistical evaluation of isotope differences among Mg pools and fluxes. Such evaluations, in turn, are needed to distinguish between biotic and abiotic contributions to Mg2+ in catchment runoff. We report the first annual time-series of δ26Mg values simultaneously determined for rainfall, canopy throughfall, soil water and runoff. The studied 55-ha catchment, situated in western Czech Republic, is underlain by Mg-rich amphibolite and covered by mature spruce stands. Between 1970 and 1996, the site received extremely high amounts of acid deposition and fly ash form nearby coal-burning power plants. The δ26Mg values of open-area precipitation (median of −0.79‰) at our study site were statistically indistinguishable from the δ26Mg values of throughfall (−0.73‰), but significantly different from the δ26Mg values of soil water (−0.55‰) and runoff (−0.55‰). The range of δ26Mg values during the observation period decreased in the order: open-area precipitation (0.57‰) > throughfall (0.27‰) > runoff (0.21‰) > soil water (0.16‰). The decreasing variability in δ26Mg values of Mg2+ from precipitation to soil water and runoff reflected an increasing homogenization of atmospheric Mg in the catchment and its mixing with geogenic Mg. In addition to atmospheric Mg, runoff also contained Mg mobilized from the three major solid Mg pools, bedrock (δ26Mg of −0.32‰), soil (−0.28‰), and vegetation (−0.31‰). The drought of summer 2019 did not affect the nearly constant δ26Mg value of runoff. Collectively, our data show that within-catchment processes buffer the Mg isotope variability of the atmospheric input.  相似文献   
4.
Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks due to ionization radiation. During the Work Package 2400 of the COST-724/WG-2 action, a number of spacecraft and aircraft experiments have been performed with both active and passive detectors. A large data base has been created. In this contribution we would like to stress the results obtained and their importance in three particular directions: (i) Simultaneous investigation of galactic cosmic rays on aircraft and on the International Space Station (ISS); (ii) Onboard spacecraft neutron contribution as estimated on the basis of the comparison of results measured with MDU/Liulin equipment onboard ISS, foton capsule and a commercial aircraft flying at subsonic altitudes; (iii) Complex analysis of the results of long term measurements onboard a Czech Airlines aircraft. The results obtained are presented, analyzed, and discussed, and their complementary nature is underlined. The contribution represents a version of the Final Report of the Work Package 2400 of the COST-724/WG-2: Radiation Environment of the Earth.  相似文献   
5.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   
6.
Concurrent observations of solar soft X-ray photometers aboard the US weather and space environment monitoring satellite GOES 6 and the USSR geophysical research satellite PROGNOZ 9 made it possible to compare physical parameters of flare plasmas obtained from both instruments as they observed the same solar events. Because of significant instrumental differences, a new method for comparing results had to be developed; this method is described.This paper addresses two related topics: (1) the intercomparison of two dissimilar X-ray photometers that cover approximately the same region of the X-ray spectrum, and (2) the analysis of flare plasma during the rise and decay phases, utilizing the dissimilar response characteristics of the X-ray sensors to discriminate the non-isothermal from isothermal epochs and to identify some of the main properties of those epochs.The intercomparison work considered the different spectral responses of the two photometers, but it was found that the residual differences in the respective X-ray fluxes were apparently due to a combination of environmental factors and uncertainties in the sensor calibrations. These sources of error affected the overall output of the photometers and the relative output of the two channels within each instrument. The effect of the error sources was largest at low flux levels and low temperatures; consequently the computed temperatures and emission measures were in relatively good agreement near X-ray maximum, particularly for those flares registering the highest temperatures.The analysis of flare plasma composition indicated that at the initial stage the plasma is strongly non-isothermal; it then thermalizes gradually, becoming mainly isothermal during the decay phase. A method for quantifying the distribution of the non-isothermal plasma is presented.  相似文献   
7.
Samples of ascending geogas flow particles were collected on to SiN grids directly in the Quaternary sediments overlying the Dongshengmiao polymetallic pyrite deposit, China. Corresponding soil samples were collected in the surface of Dongshengmiao district at the same time. After pretreatment, these SiN grid samples were analyzed by transmission electron microscopy. The tests focused on the characteristics of particles including size, shape, chemical composition, structure and association. The results show that there are numerous carbon‐bearing particles in particulate samples of the ascending geogas flow. The particles contain organic matter, carbonate or carbonate mixed with other minerals. These carbon‐bearing particles generally contain metallic elements like Fe/Zn/Au/Cu/Pb. However, all of the soil particles do not contain elemental C and only consist of common elements (O, Na, Mg, Al, Si, Ca, Ti) just like the composition of earth crust. Through a comparison between the particles from different sources, the carbon‐bearing particles were found to come only from the deep earth and carried useful information about concealed deposits as they pass through the deep‐seated orebodies. Given the influences of organic matter on mineralization, the carbon‐bearing particle may provide information on the deposit genesis. Combining the use of geogas particle for prospecting with characteristics of large depth, and the carbon‐bearing materials' close spatial and genetic relationship with orebodies, we propose a new prospecting method based on the characteristics of carbon‐bearing particles, including morphology, size, chemical component and ultra‐microstructure. This approach could be applied to the exploration of deposits deep in the earth and abundant in carbon‐bearing matter. This approach can provide efficient and effective deposit exploration.  相似文献   
8.
The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.  相似文献   
9.
In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previous work through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号