首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Amphibole + phlogopite + diopside bearing veins are observed in a large number of upper mantle xenoliths, but the composition of the melt that forms them is poorly constrained. Recent data from the Heldburg Phonolite, Central Germany, has shown that phonolite melt will react with olivine and orthopyroxene xenocrysts to form reaction rims of amphibole + phlogopite + diopside at mid-lower crustal pressures. This is the first example of where a melt has reacted with peridotite to form the mineralogy of the metasomatic veins. It is therefore necessary to explore whether a phonolite melt could be the parent melt that forms amphibole + phlogopite + diopside metasomatic veins. Experimental reactions between single crystals of olivine and orthopyroxene with phonolite melt were conducted at upper mantle conditions of 1.0–1.5 GPa and 900–1,000 °C. Melt water contents were varied from anhydrous to >12 wt. H2O. Olivine reacts to form phlogopite reaction rims with overgrowths of diopside <1,000 °C or rims of secondary olivine >1,000 °C. Orthopyroxene reacts to form amphibole with epitaxial diopside overgrowths <1,000 °C. No reaction rims form when the bulk melt H2O is lower than ~3.8 wt%. Pressure has little effect over the small range tested. These experiments reproduce reaction rims on olivine and orthopyroxene observed in the Heldburg Phonolite, Central Germany, and suggest that a relatively narrow range of temperatures and melt water contents is required for rim formation. The compositions of rim amphibole, phlogopite and diopside from the experiments have very similar compositions to those from Heldburg but do not match those from metasomatic veins. Phenocrysts from Heldburg are similar to the metasomatic veins, suggesting that a phonolite could potentially form the veins if vein formation is dominated by crystallization rather than reaction and replacement of wall rock phases.  相似文献   

2.
The phlogopite peridotite unit of the Finero Complex is a restiticharzburgite that records two metasomatic events. The first eventis related to the intrusion of basaltic magma, which reactedwith the pyroxene of the host harzburgite to produce chromititepods with dunite haloes. It also produced secondary clinopyroxeneand amphibole in the harzburgite and enriched harzburgite inNa and the light rare earth elements. The second metasomaticevent is related to the later intrusion of clinopyroxeniticdykes. During this event, water-rich vapour penetrated the harzburgitealong fractures and reacted with it to form phlogopite, thusenriching the rock in K. Chromitites host zircons that yieldan age for the first metasomatic event of 207·9 + 1·7/-1·3Ma, during which time extensional tectonics prevailed in theSouthern Alps. KEY WORDS: metasomatism; chromitite; zircon; geochronology; Finero  相似文献   

3.
The magmatic metasomatism that was responsible for producing chromitite–dunite bodies in the unusual phlogopite peridotite of the Finero Complex in Permian to Triassic times also influenced the Cr-platinum group elements (PGE) mineralization. At least the end stages of this metasomatism are recorded in compositional zoning of chromite grains in the podiform chromitite. Metasomatic melt, with or without vapor, reacted with chromite to produce core-to-rim Cr enrichment of extant chromite grains and was concurrent with pyroxene crystallization. Under conditions of lower melt/rock ratio, metasomatism resulted in core-to-rim Al enrichment in chromite and crystallization of amphibole between chromite and clinopyroxene. This early, high-temperature metasomatism is unrelated to the later and pervasive K-metasomatism that crystallized phlogopite and was associated with the intrusion of clinopyroxenite dikes that cut the peridotite. Much later, serpentinization of olivine locally depleted chromite in Al and enriched it in Fe and formed minor amounts of magnetite.The PGE, which are present mainly as laurite inclusions in chromite, were remobilized by the early metasomatism. This resulted in substantial variation in the PGE contents of chromitites and imposed a characteristic PGE pattern in which chondrite-normalized Os, Ir, Ru and Rh contents are high but Pt and Pd contents are low. The slopes of PGE chondrite-normalized concentration patterns are systematically related to absolute PGE abundance and to rock mode. Chromitites with low modal orthopyroxene, clinopyroxene, and amphibole exhibit negative PGE slopes and contain relatively high PGE concentrations, whereas chromitites rich in these silicate minerals have positive slopes and low PGE contents.  相似文献   

4.
Summary Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rh?nite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths. Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts. Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle. Received November 23, 1999; revised version accepted September 5, 2001  相似文献   

5.
The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN = 8–17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270) = 0.7055–0.7093), low radiogenic Nd (ɛNd(270) = −1 to −3) and EMII-like Pb isotopes. Two pyroxenite – peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN ∼16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration ∼1.9 (Sr) to ∼7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) are lower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of “carbonatite” metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr = 0.7–0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust. Received: 20 July 1998 / Accepted: 28 October 1998  相似文献   

6.
The tuff and basanite of Rosenberg 20 km NW of Kassel are thus far unknown occurrences of megacrysts and polycrystalline aggregates of pargasitic-kaersutitic amphibole and of xenoliths of amphibole-bearing peridotite and pyroxenite. The amphiboles precipitated successively with gradually increasing Fe/Mg from the same magma from which the basanite was ultimately derived. The amphibole fractionation commenced within the upper mantle but may have continued into higher levels within the ascending melt.Amphibole and phlogopite fractionation together caused an increased Na/K ratio in the Rosenberg basanite. The crystallization of amphibole and phlogopite is genetically interrelated with the violent eruptive nature of the Rosenberg volcano. The release of vapour during the final stage of amphibole crystallization is indicated by the existence of coarsely vesicular amphibole megacrysts.  相似文献   

7.
Liquidus and subliquidus phase relations of a leucite-lamproite (wolgidite) from the West Kimberley area, Australia have been studied experimentally under the volatile conditions of 3.22 wt.% H2O ( \(X_{CO_2 }\) =0.11) and 13.0 wt.% H2O ( \(X_{CO_2 }\) =0.03) between 10 to 40 kbar. Under these conditions, liquids are vapour undersaturated. In experiments with 13.0 wt.% H2O, olivine is the liquidus phase up to 24 kbar and orthopyroxene above 24 kbar. Phlogopite and rutile occur close to the liquidus above 16 kbar. Crystallization temperatures of clinopyroxenes are 50–120° C below the liquidus. Based on these results, wolgidite magma is unlikely to be a partial melt of a garnet- or spinel-lherzolite mantle but could be derived from phlogopite+rutile±olivine±or-thopyroxene assemblages occurring as metasomatized mantle.  相似文献   

8.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


9.
Phlogopite-amphibole pyroxenite xenoliths contained in an Early Palaeozoic alkali subvolcanic lam-prophyre complex in Langao County, Shaanxi Province, are metasomatized mantle xenoliths, composed mainly of clinopyroxene, amphibole, phlogopite, apatite, pervoskite, ilmenite and sphene with well-developed subsolidus metamorphism-deformation textures, such as "triple points" and "cataclastic boundaries" . Minerological studies indicate that clinopyroxene is rich in SiO2 and MgO and poor in TiO2 and Al2O3, which is notably different from magmatogenic deep-seated megacrysts and phenocrysts formed in the range of mantle pressure. Amphibole and phlogopite have the compositional feature of mantle-derived amphibole and phlogopite. Sm-Nd isotope studies suggest that the metasomatized mantle beneath Langao County is the product of metasomatism of primitive mantle by melt (fluid) derived from the mantle plume, and the mantle metasomatism occurred 650 Ma ago. The process of mantle metasomatism changed from mantle me  相似文献   

10.
Mineralogical and chemical compositions of ejected carbonate inclusions of Vesuvian gaseous phase are compared with those of carbonate sediments of the Somma-Vesuvius area. The basement of Vesuvius mainly consists of Mesozoic limestones. Most of these are characterized by extremely low insoluble residues. In this area thick dolomite beds occur in the Triassic system only. A calcareous layer of approximately 100 to 150 meters thickness characterized by high Sr contents (0.19% Sr in the average) is to be found within the Triassic dolostones. Several carbonate ejecta also show high Sr contents (0.1% Sr) but chemical composition of some of these ejecta differs somewhat from that of the Triassic layer high in Sr. Contact with the volcanic volatile phase and melt has produced some alterations in the composition of many ejecta. Magnesian calcites are abundant and periclase, brucite, tremolite, phlogopite and magnesite were found in the ejecta examined. Silicon, manganese, iron, zinc and, to a smaller extent, potassium and copper have been most probably transported from the volcanic gas phase into ejected carbonate inclusions. Owing to metasomatic actions of the volcanic volatile components, rearrangement and alteration of Ca and Mg contents occurred in the carbonate minerals of several ejecta. Under the influence of volcanic pressure and temperature, magnesium content originally in dolomite might be transformed into the calcite structure. \(\frac{{{\text{MgO}}}}{{{\text{CaO + MgO}}}}\) molar ratios of several carbonate ejecta do not correspond with those found in sedimentary limestones and dolostones. It cannot be proved whether the Mg of the mixed calcite-dolomite ejecta has been partially introduced from the volatiles or lost from the carbonate phases.  相似文献   

11.
The opaque minerals in eclogite xenoliths from Stockdale Kimberlite are rutile, ilmenite, and a complex polysulfide assemblage. Rutile shows exsolutions of ilmenite and spinel. Discrete ilmenite contains up to 10 wt % MgO in solid solution and is a primary mineral, but not of kimberlitic origin. Pyrrhotite containing exsolved pentlandite is the major sulfide mineral, and is usually rimmed by chalcopyrite which may display exsolution of cubanite. A veneer of monosulfide solid solution (12 wt % Ni and 5 wt % Cu) forms a rim on the chalcopyrite-pyrrhotite masses. The simple model of sulfide liquid immiscibility within a silicate melt may account for the origin of the pyrrhotite-pentlandite-chalcopyrite assemblage, but it fails to explain the occurrence within one and the same sulfide globule of a monosulfidess rim, separated from an exsolved pyrrhotite core by chalcopyrite. The monosulfidess is probably a metastable phase produced by the partial melting of a preexisting sulfide assemblage of similar bulk chemical composition to that existing at present. The melting possibly took place instantaneously when the eclogite was incorporated into the rising hot kimberlitic magma. Fast cooling during the explosive ascent of the kimberlite could have led to the quenching of the monosulfide solid solution. Rutile in the eclogite xenolith was unaffected by the heating, but secondary amphibole and biotite may have possibly formed during this event.  相似文献   

12.
Garnet pyroxenites and corundum-garnet amphibolites from the Dent peninsula of eastern Sabah (North Borneo) occur as blocks in a slump breccia deposit of late Miocene age. The earliest formed minerals include pyrope-almandine garnet, tschermakitic augite, pargasite, and rutile. Cumulate textures are present in two of the six specimens studied. The earlier fabric has been extensively brecciated and partly replaced by plagioclase, ilmenite, and a fibrous amphibole. The bulk composition and mineralogy of these rocks are similar to those of garnet pyroxenite lenses within ultramafic rocks. Estimated temperature and pressure for the origin of the Sabah garnet pyroxenites is 850±150° C and 19±4 kbar.  相似文献   

13.
14.
A spinel ± amphibole ± feldspar bearing Iherzolites, a spinel ± amphibole ± feldspar bearing harzburgites, and a spinel ± amphibole ± phlogopite bearing wehrlites are metasomatized peridotitic mantle xenoliths from Ain Temouchent volcanic complex (North-West Algeria). These xenoliths are metamorphic/deformed rocks with a strong planar fabric typical of mantle tectonites. The wehrlites are not the result of a simple model of partial melting. The spinel ± amphibole ± feldspar bearing harzburgites and lherzolites exhibit asymmetric concave-shaped REE patterns. These indicate that an earlier partial melting event was followed by metasomatic processes. The wehrlites have higher REE concentrations and LREE/HREE fractionations, indicating a sequential evolution of wehrlites from previous refractory material with melting as an addition process. This process reflects the interaction of the lithospheric mantle beneath the Ain Temouchent area with basaltic melt. Metasomatism is expressed by the formation of amphibole, phlogopite, and increased abundances of clinopyroxene at the expense of orthopyroxene, in lherzolite and harzburgite. In the Ain Temouchent area, metasomatizing agents are Na-alkali silicates. The similarities observed between the glasses studied in this paper, and the basaltic host rocks of the Ain Temouchent area, may suggest a common mantle source, or with chemical similarities but with relatively different evolutions pathways. The formation of glass in wehrlites from the Ain Temouchent area has an origin formed by the breakdown of amphibole or phlogopite as a result of decompressional melting and production of silica-undersaturated glasses. The glass reacts with essentially orthopyroxene to produce silica-rich glasses. This study has contributed to highlighting a relationship between glass, and the processes that caused the formation of metasomatic phases.  相似文献   

15.
Wyomingite collected from Leucite Hills is composed mainly of leucite, diopside, phlogopite, and small amounts of apatite, calcite, magnetite and rare amphibole, and is characterized by very high content of potash. Thermal experiments at atmospheric pressure indicate that the liquidus phase is always diopside with liquidus temperature of 1320 °C, and solidus temperature is about 1000 °C. Various kinds of melt inclusions are abundant in all constituent minerals. They comprise mono-phase (glass only), two-phase (gas+glass), three-phase (gas+glass+one crystalline phase) and multi-phase (gas+glass+more than two crystalline phases) inclusions. Thermal experiments have been made on these inclusions in phlogopite, diopside, and leucite in order to estimate the temperature of crystallization by homogenizing these inclusions. The results show that the crystallization of wyomingite began with formation of phlogopite accompanied by diopside at 1270 °C. Although diopside ceased crystallization at 1220 °C recurrent crystallization of phlogopite was noticed between 1120 ° and 1040 °C. Leucite crystallized out abundantly between 1250 ° and 1150 °C. Complete solidification of wyomingite occurred at about 1000 °C.  相似文献   

16.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   

17.
Mantle-derived xenoliths from the Marsabit shield volcano (easternflank of the Kenya rift) include porphyroclastic spinel peridotitescharacterized by variable styles of metasomatism. The petrographyof the xenoliths indicates a transition from primary clinopyroxene-bearingcryptically metasomatized harzburgite (light rare earth element,U, and Th enrichment in clinopyroxene) to modally metasomatizedclinopyroxene-free harzburgite and dunite. The metasomatic phasesinclude amphibole (low-Ti Mg-katophorite), Na-rich phlogopite,apatite, graphite and metasomatic low-Al orthopyroxene. Transitionalsamples show that metasomatism led to replacement of clinopyroxeneby amphibole. In all modally metasomatized xenoliths melt pockets(silicate glass containing silicate and oxide micro-phenocrysts,carbonates and empty vugs) occur in close textural relationshipwith the earlier metasomatic phases. The petrography, majorand trace element data, together with constraints from thermobarometryand fO2 calculations, indicate that the cryptic and modal metasomatismare the result of a single event of interaction between peridotiteand an orthopyroxene-saturated volatile-rich silicate melt.The unusual style of metasomatism (composition of amphibole,presence of graphite, formation of orthopyroxene) reflects lowP –T conditions (850–1000°C at < 1·5GPa) in the wall-rocks during impregnation and locally low oxygenfugacities. The latter allowed the precipitation of graphitefrom CO2. The inferred melt was possibly derived from alkalinebasic melts by melt–rock reaction during the developmentof the Tertiary–Quaternary Kenya rift. Glass-bearing meltpockets formed at the expense of the early phases, mainly throughincongruent melting of amphibole and orthopyroxene, triggeredby infiltration of a CO2-rich fluid and heating related to themagmatic activity that ultimately sampled and transported thexenoliths to the surface. KEY WORDS: graphite; peridotite xenoliths; Kenya Rift; modal metasomatism; silicate glass  相似文献   

18.
The circular structure at Mohar (Dhala structure) in the western part of Bundelkhand Gneissic Complex, is marked by a prominent outlier of Kaimur sediments surrounded by low lying concentric sequence of sediments of Dhala Formation and basement granite breccia. This has been interpreted as a volcanic eruption related cauldron structure and meteoritic impact crater structure by various authors, on the basis of absence or presence of shock indicators in the clasts of a rhyolite-like rock that crops out scantily in the north western part of the structure. During the course of extensive sub-surface uranium exploration in this structure, the geoscientists of Atomic Minerals Directorate for Exploration and Research observed unequivocal and rampant evidences of shock metamorphic features for the first time in drill core samples of basement granitoids which constitute the bed rock for the rhyolite-like melt breccia, which overlies it. Published data of shock metamorphic features from this area are largely confined to the surface samples of the rhyolite-like melt rock, exposed in sparse outcrops. The shock metamorphic features recorded in the sub-surface granitoid bed rock samples during the present study, comprise planar deformation features (PDF) in quartz, feldspar, apatite and zircon, toasted, diaplectic, ladder-textured feldspars, selectively shock-melted feldspars and melt-veined quartz. The shock metamorphic features recorded in surface and sub-surface samples of the melt rock include ballen quartz, PDF in quartz clasts, toasted and diaplectic feldspar clasts shocked basic rock fragments with isotropised feldspars. Both the shocked bedrock granitoid and the melt rock bear uncharacteristic geochemical signatures with elevated K2O, MgO and depleted CaO. The study also observes that the melt breccia overlying the granitoid bedrock also occurs as pocket-like patches at various depths within the granitoids. Thus, the present findings have helped in understanding the attributes of the basement granitoid and associated melt breccia, thereby linking the genesis of the latter by selective melting of the former, due to the process of impact. It reinforces the already propounded theory of impact as the likely cause for the development of the structure in the basement Bundelkhand granitoid that was later filled by sediments standing out presently as a mesa.  相似文献   

19.
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.  相似文献   

20.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号