首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical studies on the Hohonu Batholith, of the West Coast, South Island, New Zealand, have recognised two distinct but chemically related suites of mid-Cretaceous granitoids. The suites are characterised by restricted radiogenic isotopic compositions (Sr(i) = 0.7062 to 0.7085; ɛNd(i) = −4.4 to −6.1), and represent melting of a mafic lithosphere source followed by interaction with Ordovician metasediments. The two suites (Te Kinga Suite and Deutgam Suite) are distinguished by contrasting contents of Al2O3, Na2O, Sr, Ba, Eu and HREE, attributable to different residual asssemblages controlled by differing H2O contents during melting of a metabasaltic source. The relatively mafic, metaluminous, I-type Deutgam Suite represents magmas derived by dehydration melting in equilibrium with an amphibolitic (plagioclase + amphibole) residue. In contrast, the peraluminous, high silica compositions of the Te Kinga Suite were produced by melting at higher H2O contents, reducing the stability of plagioclase and resulting in a melt in equilibrium with a plagioclase-free eclogitic (garnet + amphibole) residue. Residual plagioclase during generation of the Deutgam Suite resulted in lower Al2O3, Na2O, Sr, Ba and Eu contents, whereas residual garnet during generation of the Te Kinga suite resulted in depleted HREE contents. The mid-Cretaceous granitoids of the Hohonu Batholith were generated during a period of rapid tectonic transition from crustal thickening during collision to crustal thinning and core complex formation during extension. Received: 23 July 1996 / Accepted: 21 August 1997  相似文献   

2.
Tephra lapilli from six explosive eruptions between April 1996 and February 1998 at Popocatepetl volcano (=Popo) in central Mexico have been studied to investigate the causes of magma diversification in thick-crusted volcanic arcs. The tephra particles are sparsely porphyritic (≈5 vol%) magnesian andesites (SiO2=58–65 wt%; MgO=2.6–5.9 wt%) that contain phenocrysts of NiO-rich (up to 0.67 wt% NiO) magnesian olivine (Fo89–91 cores) with inclusions of Cr-spinel (cr#=59–70), orthopyroxene (mg#=63–76), clinopyroxene (mg#=68–86), intermediate to sodic plagioclase (An33–66), and traces of amphibole. Major and trace element systematics indicate magma mixing. The liquid mg#melt ratios inferred from the ferromagnesian phenocrysts suggest the existence of a mafic (mg#melt ≈ 72–76) and an evolved component magma (mg#melt ≈ 35–40). These component magmas form a hybrid magnesian andesite with an intermediate range of mg#melt=50–72. The mafic end member (mg#melt ≈ 72–75) is saturated with olivine and spinel and crystallizes at temperatures ≈1170–1085 °C with oxygen fugacities close to the fayalite–magnetite–quartz buffer and elevated water contents of several wt% H2O. A likely location of crystallization is at lower crustal levels, possibly at the Moho. Olivine is followed by high-mg# clinopyroxene which could start to crystallize during magma ascent. At depths of ≈4 to 13 km, the mafic magma mixes with an evolved composition containing low-mg# clino- and orthopyroxene and plagioclase at a temperature of ≈950 °C. The repetitive ascent of batches of mafic magmas spaced days to weeks apart implies multiple episodes of crystallization and magma mixing. The tephra is similar to the Popo magnesian andesites, suggesting similar generic processes for the common lavas of the volcano. The advantage of the tephra is that it can be used to reconstruct the composition of the mafic magma. Building on the elemental systematics of the tephra and a comparison to the near-primary basalts from the surrounding monogenetic fields, we infer that the Popo mafic end member is a magnesian andesite with variable, but high SiO2 contents of ≈55–62 wt% and near-primary characteristics, such as high-mg#melt of 72–75, FeO*/MgO ratios <1 (if extrapolated to an mg#melt of 72–75), and high Ni contents (=200 ppm Ni). This model implies that the typical elemental signature of the Popo andesites, such as the low CaO, Al2O3, FeO*, high Na2O contents, and the depletion in high-field strength elements (e.g., P, Zr, Ti), are mantle source phenomena. Thus, determining the elemental budget of the magnesian andesite, as it is prior to the modifications by crustal differentiation, is central to quantifying the subcrustal mass fluxes beneath Popo. Received: 13 December 1999 / Accepted: 11 August 2000  相似文献   

3.
The discrimination between potential source materials involved in the genesis of Iberian granites and granodiorites, as well as the role of mantle-crust interactions, are examined using constraints imposed by melting experiments, melting-assimilation experiments and Sr-Nd isotope systematics. The Sr-Nd isotope relationships indicate the existence of different genetic trends in which juvenile mantle materials are involved by different mechanisms: (1) a source trend, traced by a particular evolution of the pre-Hercynian basement and indicating mantle participation at the time of sedimentation; (2) a set of magmatic trends traced by gabbro-tonalite-enclave-granodiorite associations, implying the incorporation of new mantle material at the time of granite generation. These relationships strongly support a pure crustal origin for the peraluminous leucogranites, derived from partial melting of crustal protoliths, and a hybrid origin for the peraluminous granodiorites. These granodiorites are the most abundant granitic rocks of the Central Iberian zone (CIZ) of the Iberian massif, implying that processes of hybridisation by assimilation and/or magma mixing played an important role in granitoid production during the Hercynian orogeny. These hypotheses have been tested by means of melting and assimilation experiments. Melting experiments in the range 800–900 °C and at pressures of 3, 6, 10 and 15 kbar indicate that: (1) several potential source materials such as Bt-Ms gneisses and metagreywackes are suitable for the production of peraluminous leucogranite melts; (2) the melt compositions are always leucogranitic, regardless of pressure; (3) pressure exerts a strong influence on the fertility of the source: experiments at 3 kbar produce more than 20 vol% of melt, compared with less than 5 vol% of melt produced at 10 and 15 kbar and at the same temperature. The melting-assimilation experiments carried out at 1000 °C and 4, 7 and 10 kbar and using a proportion of 50% gabbro and 50% gneiss give high melt proportions (more than 50 vol.%) and noritic residues. These melts have the composition of leucogranodiorites, and overlap with part of the compositional range of peraluminous granodiorites of the Iberian massif. The generation of more mafic granodiorites may be explained by the incorporation of some residual orthopyroxene to the granodiorite magmas. The low solubility of Fe + Mg prevents the generation of granodiorite melts with more than 3 wt% of MgO + FeO at all crustal pressures. The large volumes of peraluminous, hybrid granodiorites, produced by assimilation of crustal rocks by mantle magmas, imply that an important episode of crustal growth took place during the Late-Palaeozoic Hercynian orogeny in the Iberian massif. Received: 30 June 1998 / Accepted: 27 November 1998  相似文献   

4.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

5.
四川西部天全地区花岗岩属于扬子地块西缘岩浆岩带,是"康滇地轴"北段的重要组成部分。岩石形成年龄为851±15Ma(MSWD=0.7),属于新元古代花岗岩,与扬子地块西缘和北缘大量的中酸性侵入体和火山岩具有相近的形成年龄。火夹沟花岗闪长岩为过铝质、低Si O2、具有相对亏损的Sr-Nd-Pb同位素地球化学组成,结合岩石低的Al2O3/Ti O2和高的Ca O/Na2O比值,其应是在镁铁质岩浆底侵的条件下,成熟度较低的杂砂岩部分熔融形成的过铝质熔体,岩石较低的Si O2含量表明其同化了部分镁铁质熔体。而角脚坪花岗岩具有高的Si O2含量,为过铝质、富Na的熔体,而且具有极度亏损的Sr-Nd同位素组成,表明其应是亏损的玄武质岩石(洋壳或是与地幔柱有关的玄武岩)在H2O饱和条件下发生低程度部分熔融形成的过铝质熔体。结合扬子西缘其它新元古代火成岩的地球化学特征及区域构造资料,我们认为天全地区的Na质花岗闪长岩-花岗岩组合代表在高地温梯度条件下,玄武质岩石在H2O饱和条件下发生部分熔融形成的过铝质花岗岩。  相似文献   

6.
High temperature (>900 °C) metamorphism affected the New Russia gneiss complex in the aureole of the Marcy anorthosite, Adirondack Highlands, New York. Dehydration melting of pargasitic hornblende and plagioclase in metagabbro during contact metamorphism produced garnet among other phases, an indicator that pressure exceeded 700 MPa during anatexis. Partial melting also occurred in mangerite and charnockite. Minerals that equilibrated during melting yield barometric estimates of 970 ± 100 MPa (garnet–orthopyroxene–plagioclase–quartz in metagabbro and mangerite) and 735 ± 100 and 985 ± 100 MPa (garnet–hornblende–plagioclase–quartz, metagabbro and mangerite, respectively). From these results we infer that the Marcy anorthosite was emplaced at a depth of at least 23 km and probably near 32 km. Received: 9 February 2000 / Accepted: 4 April 2000  相似文献   

7.
The equilibrium phase relations of a mafic durbachite (53 wt.% SiO2) from the Třebíč pluton, representative of the Variscan ultrapotassic magmatism of the Bohemian Massif (338–335 Ma), have been determined as a function of temperature (900–1,100°C), pressure (100–200 MPa), and H2O activity (1.1–6.1 wt.% H2O in the melt). Two oxygen fugacity ranges were investigated: close to the Ni–NiO (NNO) buffer and 2.6 log unit above NNO buffer (∆NNO + 2.6). At 1,100°C, olivine is the liquidus phase and co-crystallized with phlogopite and augite at 1,000°C for the whole range of investigated pressure and water content in the melt. At 900°C, the mineral assemblage consists of augite and phlogopite, whereas olivine is not stable. The stability field of both alkali feldspar and plagioclase is restricted to low pressure (100 MPa) at nearly water-saturated conditions (<3–4 wt.% H2O) and T < 900°C. A comparison between experimental products and natural minerals indicates that mafic durbachites have a near-liquidus assemblage of olivine, augite, Ti-rich phlogopite, apatite and zircon, followed by alkali feldspar and plagioclase, similar to the mineral assemblage of minette magma. Natural amphibole, diopside and orthopyroxene were not reproduced experimentally and probably result from sub-solidus reactions, whereas biotite re-equilibrated at low temperature. The crystallization sequence olivine followed by phlogopite and augite reproduces the sequence inferred in many mica-lamprophyre rocks. The similar fractionation trends observed for durbachites and minettes indicate that mafic durbachites are probably the plutonic equivalents of minettes and that K- and Mg-rich magmas in the Bohemian Massif may have been generated from partial melting of a phlogopite–clinopyroxene-bearing metasomatized peridotite. Experimental melt compositions also suggest that felsic durbachites can be generated by simple fractionation of a more mafic parent and mixing with mantle-derived components at mid crustal pressures.  相似文献   

8.
Late Carboniferous (300–290 Ma) calc-alkaline basalts, andesites, and rhyolites typical of volcanic arc settings occur in the intermontane Saar-Nahe basin (SW Germany) within the Variscan orogenic belt. The volcanic rock suite was emplaced under a regime of tensional tectonics during orogenic collapse and its origin has been explained by melting of mantle and crust in the course of limited lithospheric rifting. We report major, trace and rare-earth-element data (REE), and Nd-Pb-Sr-O isotope ratios for a representative sample suite, which are fully consistent with an origin closely related to plate subduction. Major and trace element data define continuous melt differentiation trends from a precursor basaltic magma involving fractional crystallization of olivine, pyroxene, plagioclase, and magnetite typical of magma evolution in a volcanic arc. This finding precludes an origin of the andesitic compositions by mixing of mafic and felsic melts as can be expected in anorogenic settings. The mafic samples have high Mg numbers (Mg# = 65–73), and high Cr (up to 330 ppm) and Ni (up to 200 ppm) contents indicating derivation from a primitive parental melt that was formed in equilibrium with mantle peridotite. We interpret the geochemical characteristics of the near-primary basalts as reflecting their mantle source. The volcanic rocks are characterized by enrichment in the large ion lithophile elements (LILE), negative Nb and Ti, and positive Pb anomalies relative to the neighboring REE, suggesting melting of a subduction-modified mantle. Initial Nd values of −0.7 to −4.6, Pb, and 87Sr/86Sr(t) isotope ratios for mafic and felsic volcanics are similar and indicate partial melting of an isotopically heterogeneous and enriched mantle reservoir. The enrichment in incompatible trace elements and radiogenic isotopes of a precursor depleted mantle may be attributed to addition of an old sedimentary component. The geochemical characteristics of the Saar-Nahe volcanic rocks are distinct from typical post-collisional rock suites and they may be interpreted as geochemical evidence for ongoing plate subduction at the margin of the Variscan orogenic belt not obvious from the regional geologic context. Received: 3 August 1998 / Accepted: 2 January 1999  相似文献   

9.
Phase relations of F-rich Kymi equigranular topaz granite have been investigated experimentally at 100–500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5–3.0 wt% for the crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt% F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Following reaction models the saturation of fluorite and topaz: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass ranges from 1.89 to 0.80 (average value 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. Combined petrological and experimental studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt%. The mean F content of natural biotite (3.92 wt%) suggests that the late-stage crystallization of biotite occurred in melts containing about 3 wt% F. The early crystallization of biotite and the presence of muscovite in our experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the natural assemblage, indicating that crystallization pressure may have been lower than 200 MPa for the granite. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Summary The oxygen and strontium isotope compositions of the Cambro-Ordovician granitoids cropping out in the Wilson Terrane (Granite Harbour Intrusives–GHI) constrain the petrological evolution of the magmatism in Antarctica, related to the Ross Orogeny. The measured δ18OWR values of these intrusives define three different compositional groups: the metaluminous rocks (MAG), with δ18OWR ranging from 6.9 (olivine gabbro) to 11.4‰ (monzogranite); the unaltered peraluminous granites (PAG), having δ18OWR values ranging from 10.6 to 13.2‰, and the foliated peraluminous leucogranites (SKG), characterised by δ18OWR values above 14‰. The analysis of equilibrium mineral assemblages indicates that the high δ18OWR values are magmatic and unaffected by low-temperature processes. A few peraluminous granites sampled in the vicinity of Cenozoic intrusions show anomalously low δ18OWR, due to meteoric-hydrothermal alteration. The isotopic data indicate that the coeval and spatially related metaluminous mafic and felsic intrusives forming the GHI were not comagmatic: the mafic and intermediate rocks were likely derived from lower crustal contamination of a pristine basaltic magma; their δ18OWR values were also increased during emplacement, due to the interaction with the adjacent 18O-rich hydrous felsic magmas (mixing). Oxygen isotope data indicate that the crustal sources producing the Granite Harbour intrusives were not homogeneous: the felsic metaluminous intrusives were produced by partial melting of fertile rock with possible igneous origin, whereas partial melting of a metapelitic source rock is claimed for the genesis of the peraluminous granites. Received February 9, 2001; revised version accepted August 10, 2001  相似文献   

11.
Hydrothermal experiments combined with petrologic observations form the basis for a new two-stage model for the evolution of the pre-eruption Minoan magma chamber at Santorini, Greece. Ninety-nine percent of the erupted volume is two-pyroxene, rhyodacitic magma that had been stored at a temperature of ∼885 °C, based on magnetite-ilmenite and QUILF geothermometry. The rest of the volume is basaltic to andesitic magma, which occurs as <10 cm scoria clasts and as small inclusions in rhyodacite pumices. Petrologic observations show that these magmas mixed at different scales and at different times (i.e., multiple batches of mafic magma). Hydrothermal experiments were carried out on samples of rhyodacite and a mafic scoria in order to determine magma storage conditions and the mixing history of the two magmas. At 885 °C, the rhyodacite must have been stored at water-saturated pressures of ∼50 MPa, based on its phase assemblage, matrix-glass composition, and crystal content. However, glass inclusions inside rhyodacitic plagioclase phenocrysts contain more than 6 wt% H2O, indicating they formed at pressures >200 MPa. In addition, the composition of the plagioclase hosts (An56 ± 6) of the inclusions require temperatures of 825 ± 25 °C at pressures >200 MPa. This demonstrates that the Minoan rhyodacitic magma underwent a two-stage evolution, first crystallizing at ∼825C and >200 MPa, and then rinsing to a shallow ∼50 MPa storage region with a concomitant rise in temperature to ∼885 °C. We suggest that the episodic intrusion of mafic magmas provided the necessary heat and perhaps contributed to the ascent of the magma to shallow crustal depths where it reequilibrated before the cataclysmic eruption. Phase equilibria suggest that much of the heating of the rhyodacite occurred in the shallow storage region. Thermal budget calculations suggest that the rhyodacite magma could have been heated by intrusions of basalt rising at reasonable upwelling rates and injected into the storage zone over several hundred years. Preservation of amphibole in the mafic scoria indicate that injection of mafic magma continued up until days before the cataclysmic eruption, perhaps triggering the event. Received: 30 September 1997 / Accepted: 5 October 1998  相似文献   

12.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

13.
Between 1953 and 1974, approximately 0.5 km3 of andesite and dacite erupted from a new vent on the southwest flank of Trident volcano in Katmai National Park, Alaska, forming an edifice now known as Southwest (or New) Trident. Field, analytical, and experimental evidence shows that the eruption commenced soon after mixing of dacite and andesite magmas at shallow crustal levels. Four lava flows (58.3–65.5 wt% SiO2) are the dominant products of the eruption; these contain discrete andesitic enclaves (55.8–58.9 wt% SiO2) as well as micro- and macro-scale compositional banding. Tephra from the eruption spans the same compositional range as lava flows; however, andesite scoria (56–58.1 wt% SiO2) is more abundant relative to dacite tephra, and is the explosively erupted counterpart to andesite enclaves. Fe–Ti oxide pairs from andesite scoria show a limited temperature range, clustered around 1000 °C. Temperatures from grains found in dacite lavas possess a wider range; however, cores from large (>100 μm) magnetite and coexisting ilmenite give temperatures of ∼890 °C, taken to represent a pre-mixing temperature for the dacite. Water contents from dacite phenocryst melt inclusions and phase equilibria experiments on the andesite imply that the two magmas last resided at a water pressure of 90 MPa, and contained ∼3.5 wt% H2O, equivalent to 3 km depth if saturated. Unzoned pyroxene and sodic plagioclase in the dacite suggest that it likely underwent significant crystallization at this depth; highly resorbed anorthitic plagioclase from the andesite suggests that it originated at greater depths and underwent relatively rapid ascent until it reached 3 km, mixed with dacite, and erupted. Diffusion profiles in phenocrysts suggest that mixing preceded eruption of earliest lava by approximately one month. The lack of a compositional gap in the erupted rock suite indicates that thorough mixing of the andesite and dacite occurred quickly, via disaggregation of enclaves, phenocryst transfer from one magma to another, and direct mixing of compositionally distinct melt phases. Received: 22 September 1999 / Accepted: 4 April 2000  相似文献   

14.
To investigate the effect of water on phase relations and compositions in a basaltic system, we performed crystallization experiments at pressures of 100, 200 and 500 MPa in a temperature range of 940 to 1,220°C using four different water contents. Depending on the water activity, the oxygen fugacity varied between 1 and 4 log units above the quartz-magnetite-fayalite buffer. Addition of water to the dry system shifts the solidus > 250°C to lower temperatures and increases the amount of melt drastically. For instance, at 1,100°C and 200 MPa, the melt fraction increases from 12.5 wt% at a water content of 1.6 wt% to 96.3% at a water content of 5 wt% in the melt. The compositions of the experimental phases also show a strong effect of water. Plagioclase is shifted to higher anorthite contents by the addition of water. Olivine and clinopyroxene show generally higher MgO/FeO ratios with added water, which could also be related to the increasing oxygen fugacity with water. Moreover, water affects the partitioning of certain elements between minerals and melts, e.g., the Ca partitioning between olivine and melt. Plagioclase shows a characteristic change in the order of crystallization with water that may help to explain the formation of wehrlites intruding the lower oceanic crust (e.g., in Oman, Macquarie Island). At 100 MPa, plagioclase crystallizes before clinopyroxene at all water contents. At pressures > 100 MPa, plagioclase crystallizes before clinopyroxene at low water contents (e.g. < 3 wt%), but after clinopyroxene at H2O in the melt > 3 wt%. This change in crystallization order indicates that a paragenesis typical for wehrlites (olivine–clinopyroxene–without plagioclase) is stabilized at low pressures typical of the oceanic crust only at high water contents. This opens the possibility that typical wehrlites in the oceanic crust can be formed by the fractionation and accumulation of olivine and clinopyroxene at 1,060°C and > 100 MPa in a primitive tholeiitic basaltic system containing more than 3 wt% water. The comparison of the experimental results with evolution trends calculated by the thermodynamic models “MELTS” and “Comagmat” shows that neither model predicts the experimental phase relations with sufficient accuracy.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Summary ?Post-magmatic garnets occur in volcanic breccias at the base of the Neapolitan Yellow Tuff (NYT) formation in the north-western area of the Phlegraean Fields. We report the results of a comprehensive study of these grandites. Garnet is found on the surfaces of tuffaceous blocks or inside their micropores, and is associated with sodalite, sanidine, marialite and amorphous silica. Garnet samples were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), powder and single-crystal X-ray diffraction (XRD) and infrared spectroscopy (IR). SEM observations on morphology showed typical dodecahedral and icositetrahedral habits. EPM analysis showed that they are close to grossular or andradite end members, with only moderate solid solution between them. X-ray study of single crystals showed cubic cell dimensions ao of 11.86 ? (grossular) and 12.04 ? (andradite). IR spectroscopy confirmed the presence of hydroxyls in coexisting garnet and sanidine, 0.06 wt% H2O (garnet) and 0.05–0.07 wt% H2O (sanidine), respectively. Well-crystallized sanidine of an earlier generation showed significantly higher water contents, in the range 0.13–0.23 wt% H2O. Type of occurrence and mineralogical features suggest a post-magmatic (pneumatolitic) genesis for these garnets. This is consistent with the physico-chemical processes linked to the eruptive dynamics of the breccias. Experimental studies of garnet synthesis at 550 °C and 2 kbar provide further support for this concept. Received January 16, 2002; accepted March 18, 2002  相似文献   

16.
Liquidus phase relations in the system diopside–kalsilite–forsterite–quartz with 3 wt% F were examined at 1 bar and the locations of important invariant points were determined at 18 kbar. At all pressures within this range a large liquidus field for fluorphlogopite (Phl) exists, and has a large influence on both melting and fractionation processes. One eutectic point was found to the silica-rich side of the plane Lc–Fo–Di at Di1Ks30Fo2Qz67, where a melt coexists with San, Qz, Phl and Di at 840 °C and 1 bar. Another eutectic point must exist in the silica-poor part of the system because the phase topology determines that thermal barriers must exist. At this point a feldspathoid, either Lc or Ks, must coexist with Fo, Phl and a Ca-bearing phase such as Di. The exact location and phase assemblage were not determined, but the equilibrium melt must have a composition rich in Di (>29 wt%) and extremely poor in Qz (<8 wt%). The composition of the first eutectic moves towards lower SiO2 contents with increasing pressure (Di3Ks40Fo1Qz56 at 18 kbar), whereas the second does not exist at 18 kbar due to the disappearance of Lc as a stable liquidus phase. Liquids which coexist with mafic minerals such as En, Fo, Phl and Di are important for the genesis of potassium-rich mafic rocks by partial melting in the mantle and for the early stages of fractional crystallisation. The equilibrium melt at the invariant point Fo + En + Phl + Di + L at 1125 °C is very poor in Fo and Di components at atmospheric pressure (Di5Ks37Fo5Qz53), whereas at 18 kbar the melt contains large amounts of Fo and Di (Di19Ks31- Fo28Qz21), and has a composition close to that of natural lamproites. Kamafugites do not correspond to melts in this system under any of the studied conditions, and appear to require CO2 in the source. Fractionation processes from primitive potassic basanite melts are controlled principally by the size (and not the mere presence) of the liquidus phase field for phlogopite: at high pressures where the Phl field is large, olivine is eliminated early from the fractionating assemblage and Cpx + Phl fractionation may lead to relatively silica-rich rock differentiates such as trachytes. At low pressures, extensive olivine and restricted Phl crystallisation prevents silica enrichment in the melt, resulting in phonolitic differentiates. Later crystallisation of alkali feldspar accentuates the trends laid down in the early stages of fractionation. Received: 2 February 1999 / Accepted: 14 October 1999  相似文献   

17.
Summary Fe-Ti-P-rich rocks (FTP) are unusual with respect to their mineralogy and bulk composition. Varieties of these rocks are mostly related to Proterozoic massif-type anorthosites and to a lesser extent to the upper parts of mafic-ultramafic intracratonic layered complexes and other igneous rock suites. We present results on the geology, mineralogy and geochemistry of a new occurrence of FTP, associated with mafic rocks in the northwestern part of Iran. The Qareaghaj mafic-ultramafic intrusion (QMUI) is a small igneous body situated between Palaeozoic sedimentary rocks and a Precambrian low grade metamorphic complex. The QMUI is composed mainly of non-mineralized mafic and apatite- and Fe-Ti oxide-rich ultramafic rocks. The mafic rocks, mainly coarse-grained gabbro, microgabbro and amphibolite, have a simple mineral assemblage (plagioclase + clinopyroxene + ilmenite) and based on field observations, mineralogy and chemical composition are comagmatic. The ultramafic rocks with high proportion of olivine (∼40–66 vol.%), apatite (∼0.1–16 vol.%), ilmenite (∼11–19 vol.%) and magnetite (∼2–13 vol.%), have unusual bulk compositions (e.g., SiO2 ∼ 21–30 wt.%, total iron expressed as Fe2O3 tot ∼ 26–42 wt.%, TiO2 ∼ 5–11 wt.%, MgO ∼ 9–20 wt.%, P2O5 up to 5.1 wt.%, Cr ∼ 40–160 ppm, Ni ∼ 7–73 ppm). The FTP forms numerous sill-like layers, ranging in thickness from ∼5 cm to few meters. These rocks, totally enclosed in mafic rocks with sharp and concordant contacts, show a magmatic lamination and follow the general NW–SE trend of QMUI. The apatite-rich ultramafic rocks makes up 90–95% of the total ultramafic outcrops and contain Mg-poor olivine (Mg# ∼ 40–58) and low-Mg spinel (Mg# ∼ 30–44) in contrast to apatite-poor ones (∼60–63 and ∼43–46, respectively). Field relationships, mineral compositions and geochemical data suggested that the FTP are not related to the mafic host rocks. On the contrary, they intruded latter into the gabbros during plastic, high temperature deformation in local shear zones. Fractional crystallization of P-rich ferrobasaltic parental magma at depth, probably in an open magmatic system, not far from the QMUI magma chamber, is considered as responsible for the formation of the evolved FTP in QMUI.  相似文献   

18.
Summary Three distinctive metaluminous granitic suites have been identified from the Pan-African belt of the Kab Amiri area, Eastern Desert, Egypt. These are: 1) a trondhjemite-tonalite suite, 2) a calc-alkaline granodiorite suite, and 3) an alkali leucogranite suite. The trondhjemite-tonalite and the granodiorite suites resemble I-type granitoids whereas the alkali leucogranites display A-type characteristics. Geochemical attributes and field aspects indicate that three independent magmas, at different tectonic stages of the Pan-African crustal growth, are required to explain the origin of these granitoid suites. Rocks of the trondhjemite-tonalite suite correspond to granites of the arc stage and possess a narrow range of SiO2 with low K2O, Sr, Rb, Ba, Nb and Zr. Its composition is consistent with 20–30% partial melting of a primitive low-K tholeiitic source, similar to the early formed tholeiitic metavolcanics of the Egyptian basement. The granodiorite suite belongs to the collision stage and displays higher K2O, Rb, Ba, and Sr. Its magma was derived by 30–40% partial melting of LILE-enriched mafic island arc crust. The presence of abundant microdiorite enclaves in the trondhjemite-tonalite and the granodiorite suites suggests that mantle-derived mafic magma played an important role in their petrogenesis, acting as a heat source for melting via underplating and/or intrusion. The A-type leucogranites are post-collision highly fractionated granites. They exhibit low Al2O3, MgO, CaO, TiO2, Sr, and Ba and high Rb, Nb, Y. The wide chemical variations within this suite are consistent with its evolution by fractional crystallization of plagioclase, K-feldspar, amphibole, Fe–Ti oxides, and apatite from a mafic magma. The parent magma was originated in the upper mantle due to crustal attenuation associated with extension in the late stage of the Pan-African crustal evolution. Received September 13, 2000; revised version accepted May 4, 2001  相似文献   

19.
A review of published and newly measured densities for 40 hydrous silicate glasses indicates that the room-temperature partial molar volume of water is 12.0 ± 0.5 cm3/mol. This value holds for simple or mineral compositions as well as for complex natural glasses, from rhyolite to tephrite compositions, prepared up to 10–20 kbar pressures and containing up to 7 wt% H2O. This volume does not vary either with the molar volume of the water-free silicate phase, with its degree of polymerization or with water speciation. Over a wide range of compositions, this constant value implies that the volume change for the reaction between hydroxyl ions and molecular water is zero and that, at least in glasses, speciation does not depend on pressure. Consistent with data from Ochs and Lange (1997, 1999), systematics in volume expansion for SiO2–M2O systems (M=H, Li, Na, K) suggests that the partial molar thermal expansion coefficient of H2O is about 4 × 10−5 K−1 in silicate glasses. Received: 30 June 1999 / Accepted: 5 November 1999  相似文献   

20.
We present a detailed mineralogical, petrological and melt inclusion study of unusually fresh, primitive olivine + clinopyroxene phyric Lower Pillow Lavas (LPL) found near Analiondas village in the northeastern part of the Troodos ophiolite (Cyprus). Olivine phenocrysts in these primitive LPL show a wide compositional range (Fo82–92) and have higher CaO contents than those from the Upper Pillow Lavas (UPL). Cr-spinel inclusions in olivine are significantly less Cr-rich (Cr/Cr + Al = 28–67 mol%) compared to those from the UPL (Cr# = 70–80). These features reflect differences in melt compositions between primitive LPL and the UPL, namely higher CaO and Al2O3 and lower FeO* compared to the UPL at a given MgO. LPL parental melts (in equilibrium with Fo92) had ∼10.5 wt% MgO and crystallization temperatures ∼1210 °C, which are significantly lower than those previously published for the UPL (14–15 wt% MgO and ∼1300 °C for Fo92). The fractionation path of LPL parental melts is also different from that of the UPL. It is characterized initially by olivine + clinopyroxene cotectic crystallization joined by plagioclase at ∼9 wt% MgO, whereas UPL parental melts experienced a substantial interval of olivine-only crystallization. Primitive LPL melts were formed from a mantle source which was more fertile than that of tholeiites from well-developed intra-oceanic arcs, but broadly similar in its fertility to that of Mid-Ocean Ridge Basalt (MORB) and Back Arc Basin Basalts (BABB). The higher degrees of melting during formation of the LPL primary melts compared to average MORB were caused by the presence of subduction-related components (H2O). Our new data on the LPL coupled with existing data for the UPL support the existing idea that the LPL and UPL primary melts originated from distinct mantle sources, which cannot be related by progressive source depletion. Temperature differences between these sources (∼150 °C), their position in the mantle (∼10 kbar for the colder LPL source vs 15–18 kbar for the UPL source), and temporal succession of Troodos volcanism, all cannot be reconciled in the framework of existing models of mantle wedge processes, thermal structure and evolution, if a single mantle source is invoked. Possible tectonic settings for the origin of the Troodos ophiolite (forearc regions of intra-oceanic island arc, propagation of backarc spreading into arc lithosphere) are discussed. Received: 20 May 1996 / Accepted: 25 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号