首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

2.
Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.  相似文献   

3.
We used statistical analyses to determine which subset of 36 environmental variables best explained variations in surface sediment δ13C and δ15N from 50 lakes in western Ireland that span a human-impact gradient. The factors controlling lake sediment δ13C and δ15N depended on whether organics in the lake sediment were mostly derived from the lake catchment (allochthonous) or from productivity within the lake (autochthonous). Lake sediments with a dominantly allochthonous organic source (high C:N ratio sediments) produced δ13C and δ15N measurements similar to values from catchment vegetation. δ13C and δ15N measurements from lake sediments with a dominantly autochthonous organic source (low C:N ratio sediments) were influenced by fractionation in the lake and catchment leading up to assimilation of carbon and nitrogen by lacustrine biota. δ13C values from lake sediment samples in agricultural catchments were more negative than δ13C values from lake sediment samples in non-impacted, bogland catchments. Hypolimnetic oxygen concentrations and methane production had a greater influence on δ13C values than fractionation due to algal productivity. δ15N from lake sediment samples in agricultural catchments were more positive than δ15N in non-impacted bogland catchments. Lower δ15N values from non-impacted lake catchments reflected δ15N values of catchment vegetation, while higher δ15N values in agricultural catchments reflected the high δ15N values of cattle manure and inorganic fertilisers. The influence of changing nitrogen sources and lake/catchment fractionation processes were more important than early diagenesis for lake sediment δ15N values in this dataset. The results from this study suggest a possible influence of bound inorganic nitrogen on the bulk sediment δ15N values. We recommend using a suitable method to control for bound inorganic nitrogen in lake sediments, especially when working with clay-rich sediments. This study confirms the usefulness of δ13C and δ15N from bulk lake sediments, as long as we are mindful of the multiple factors that can influence these values. This study also highlights how stable isotope datasets from lake surface sediments can complement site-specific isotope source/process studies and help identify key processes controlling lake sediment δ13C and δ15N in a study area.  相似文献   

4.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

5.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

6.
We studied the sedimentology, benthic foraminifera, molluscs, and δ18O and δ13C of Ammonia tepida tests in two late Holocene sediment cores from Lake Qarun (Egypt). The cores, QARU2 (upper section, 8.2 m) and QARU4 (1.4 m), span approximately the past 500 years of sedimentation. Benthic foraminifera first appeared in the upper part of QARU2 at 314 cm depth, ca. AD 1550. This depth marks the beginning of colonization of the lake by foraminifera and indicates a change in lake water salinity, as foraminifera cannot tolerate fresh water. Initially, three species of benthic foraminifera colonized the lake, Ammonia tepida, Cribroelphidium excavatum and Cribrononion incertum. Relative abundance of these species fluctuated throughout cores QARU2 and QARU4 and highest overall faunal diversity occurred at the beginning of the twentieth century. High relative abundances of C. incertum and deformed tests are attributed to periods of greater lakewater salinity. Peaks in both δ18O and δ13C indicate times of higher evaporation and reduced fresh water inflow. Inferred salinity was high around AD 1700 and after AD 1990. Rapid response of climate proxy variables indicates the high sensitivity of Lake Qarun to environmental changes over the past several 100 years. Increases in lakewater Mg concentration during past evaporative events, associated with less fresh water inflow, probably provided conditions suitable for C. incertum to build its white or transparent tests. Gradual decrease of C. incertum, until its disappearance at 100 cm depth ca. AD 1890, indicates a more persistent trend in lake water chemistry. Higher concentrations of dissolved sulphates were the likely cause of this species disappearance. Recent, twentieth-century sediments were deposited under optimal salinity (37‰) for benthic fauna, but further environmental changes are indicated by the decrease or disappearance of several benthic foraminifera and mollusc species. Intermittent hypoxia in the lake’s bottom waters, caused by cultural eutrophication, may account for these most recent changes.  相似文献   

7.
Lacustrine sediments in north-eastern Germany have rarely been used as archives to address the effects of climate change and human impact on both lake ecosystem and landscape evolution for this region. Sacrower See, a hardwater lake located in Brandenburg, provides a unique sediment record covering the past 13,000 years which was used to reconstruct climatic and anthropogenic forcing on lacustrine sedimentation. Time control is provided by 12 AMS 14C dates of terrestrial plant remains, the Laacher See Tephra, and the onset of varve formation in AD 1870 (80 cal. BP). Geochemical (including XRF logging of major elements, CNS analyses as well as δ13Corg and δ15N measurements) and pollen analyses allowed detecting detailed environmental changes in the sediment record. During the Younger Dryas cold phase increased soil erosion and hypolimnetic oxygen depletion enhanced the nutrient supply to the lake water causing eutrophic conditions. The beginning of the Holocene is characterized by large changes in C/N ratios, total sulphur, δ13C of bulk organic matter as well as in K, Si, and Ti, reflecting the response of the lake’s catchment to climatic warming. Reforestation reduced the influx of detrital particles and terrestrial organic matter. The first, rather weak evidence of human impact is documented only in the pollen record at 5,500 cal. BP. However, until 3,200 cal. BP sedimentological and geochemical parameters indicate relatively stable environmental conditions. During periods of intense human impact at around 3,200, 2,800, and 900 cal. BP peaks in Ti and K represent phases of increased soil erosion due to forest clearing during the Bronze Age, Iron Age, and Medieval Times, respectively. In general, greater variation is observed in most variables during these perturbations, indicating less stable environmental conditions. The steady rise of biogenic silica accumulation rates during the Holocene reflects an increasing productivity of Sacrower See until diatoms were outcompeted by other algae during the last centuries. The applied multi-proxy approach fosters the interpretation of the sediment record to reveal a consistent picture of environmental change including environmental factors controlling lake ontogeny and the effects of human impact.  相似文献   

8.
We analyzed pollen, spores, diatoms, organic carbon, nitrogen, and δ13C of organic matter in lake sediments to infer climate changes and reconstruct the paleo-environment of subtropical Taiwan over the past ∼1300 years. A 31.5-cm sediment core that represents deposition from 650 AD to present was taken from a mountain lake, Duck Pond, located 760 m a.s.l. We differentiated five zones using cluster analysis on pollen and spore assemblages. Fluctuations in the relative abundances of arboreal taxa, herbaceous plants, and ferns reflect changes in the relative amounts of woody versus grassland vegetation. Such shifts are associated with changes in temperature and humidity and are consistent with climatic periods reported for the temperate region of central China. Climate changes inferred from the pollen assemblages are also correlated well with changes in the ratios of fern spores to pollen, with organic carbon to nitrogen, and with the δ13C values in the sediments. Fluctuations in these data throughout the entire core were in good agreement with the changes in pH inferred from diatom assemblages. This study provides evidence of climate change in northern Taiwan over the past 1.3 millennia, assuming that climate can be inferred from the ratio of arboreal to non-arboreal pollen and from the pH of the aquatic environment.  相似文献   

9.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

10.
We developed a new method for reconstructing millennia-long hurricane records from coastal environments that uses Organic Geochemical Proxies (OGPs) of organic carbon and nitrogen concentrations and their δ13C and δ15N compositions. The new method is independent of presence/absence of sand layers and improves significantly the severe-storm history resolution. The subject of this investigation is a 1.5 m long sediment core raised at 2.8 m water depth from the center of Lake Shelby, Alabama, a freshwater lake located approximately 250 m from the Gulf of Mexico, from which an overwash sand-layer based record was previously derived. The core contains two distinct sediment units; an upper 62 cm thick, fine-grained, organic-rich lacustrine sapropel (gyttja) that shows no visible structures except one sand lamina at 23.7 cm depth, and an underlying 90 cm thick, organic-poor lagoon/estuary clay unit. The sapropel unit was deposited over a 682 ± 30 cal year time interval (1320–2002 A.D.) with a mean sedimentation rate of 0.79 ± 0.04 mm/year. Lake Shelby’s water column exhibits two contrasting states based on water chemistry surveys (i) an “isolated”, stratified, mode under calm weather conditions with a relatively low trophic state, and (ii) a “flooded” mode occurring during storm surges when nutrient-rich seawater floods the lake. Statistically significant δ13C and δ15N positive excursions in organic matter, up to maximum values of −25 (‰ PDB) and 4 (‰ Air N2), respectively, are interpreted as geochemical responses to the marine intrusions that fertilize the lake, increase light availability, and cause eutrophication spikes. Detailed OGPs analyses crossing a sand layer that offers visual evidence of a catastrophic hurricane overwash event at 1717 A.D. exhibit large δ13C and δ15N positive shifts bounded by rapid returns to base values, thus confirming the validity of the hurricane identification by the OGPs model. Our data indicate that 11 catastrophic hurricanes hit the Alabama coast over the past 682 years with a rough recurrence interval of one in 62 years.  相似文献   

11.
Geochemical properties of sediments deposited in Lake Middle Marviken over the last 185 years record the impacts of a succession of environmental changes that have occurred in the watershed. Clear-cutting of forests for wood and charcoal and extensive water harnessing to support the local iron mills from 1897 to 1957 is recorded by low C/N ratios, high black carbon, and low TOC and Ntotal accumulation rates. Larger δ13C and δ15N values in sediments deposited during this period imply higher productivity. Fluctuations in Ntotal and Ptotal accumulation rates show that the lake chemistry has varied between P or N-depleted systems that affected the δ15N values. Organic matter in the sediments is predominantly immature terrestrial material. Furthermore, hydrocarbon CPI, TAR, and Paq values conform with the observed geochemical trends, variations in organic matter sources, and changes in the watershed. Accumulation rates of Cd, Pb, Zn, and S remained mostly unchanged throughout the period of mining, but an increase from 1957 to 1980 is most likely associated with air-borne industrial and fossil fuel emissions from regional urbanization. In situ microbial processes, such as iron and manganese reduction, also appear to be important in carbon cycling and in affecting the sediment and water chemistry of this lake.  相似文献   

12.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

13.
Distribution of uranium and thorium isotopes in a short sediment core obtained offshore of the Selenga Delta in Lake Baikal, Siberia, was investigated to establish their sedimentary behaviors and to look for a linkage to paleoenvironmental changes. The sediments were composed of dominantly fine detrital materials (70–85%) and a relatively high sedimentation rate (ca. 0.03 cm y−1). The depth profile of 238U content in bulk sediment samples showed a large variation of 70–123 Bq kg−1, while 232Th profile showed a relatively narrow range from 36 to 56 Bq kg−1. The observed 234U/238U activity ratios revealed a marked disequilibrium ranging from 1.53 to 1.84 with a mean value of 1.71 ± 0.07, demonstrating the presence of 50–80% authigenic 238U in the bulk sediments. The distribution of this authigenic 238U did not display any clear correlation with variations in sediment composition (organic, carbonate, Bio-SiO2 and mineral contents) including grain size median. The profile of terrigenous 238U showed a relatively similar pattern to that of 232Th. Results of sequential leaching indicate that 238U in Fe–Mn oxyhydroxides fractions were responsible for the distribution of authigenic 238U rather than in Bio-SiO2 fraction. The distribution of authigenic 238U in the bottom sediments may be explained by the fluctuation of U adsorption capacity on particles including organic matter and Fe–Mn oxyhydroxides before they entered the lake. This study highlights the potential use of authigenic and terrigenous U (Th) signatures in sediments to trace the behavior of U (Th) and to reconstruct environmental (e.g., hydrological) changes in the lake catchment area.  相似文献   

14.
Freshwater Lake Ulubat (z mean = 1.5–2.0 m and Area = ~138 km2), NW Anatolia, Turkey was filled in by fine-to-medium-grain silts during the late Holocene. Deposition in Lake Ulubat has been 1.6 cm year−1 for the last 50 years, but the sedimentation rate over the last ~1,600 years was lower (0.37 mm year−1). The organic matter and carbonate contents of the infill show cyclic changes that reflect environmental fluctuations. The silt-dominated lithology and the vertically uniform heavy metal distributions are probably due to wind-controlled sedimentation in the lake. Heterogeneous mud, derived from a large, mountainous drainage basin, is deposited in the lake mostly during summer, June to October, when conditions are hot and calm. Winter months are stormier and sediments are re-suspended due to the shallow water depth and the effect of waves on the lake bottom. It is likely that re-suspended sediments, particularly fine-grained particles, together with the heavy metals, are transported out of the lake via the outlet, especially during periods of high lake level. This resuspension and removal process probably caused the lake sediments to become silt-dominated and depleted in heavy metals. The role of broad shallow lakes in sequestering sediments and heavy metals can be described more accurately when wind data are considered. Such information may also be helpful for land-use planning in downstream areas.  相似文献   

15.
A 7.6-m lake sediment core from a marl lake, Lough Inchiquin, records variation in landscape evolution from 16,800 cal yrs B.P. to 5,540 cal yrs B.P. We observe significant variations (up to 12‰) in δ 13Corg and δ 13Ccalcite values that are interpreted to reflect secular changes in lake water δ 13CDIC values that result from a regional landscape transition from barren limestone bedrock to a forested ecosystem. Lake water δ 13CDIC values are therefore influenced by two isotopically distinct sources of carbon: terrestrial organic material (−27.1 to −31.2‰VPDB) via oxidized soil organic matter and weathered limestone bedrock (+3.4‰VPDB). Isotope excursions in lacustrine sediment records are forced not only by changes in productivity but also by changes in the terrestrial environment. This has profound implications for the interpretation of paleoclimate records derived from lacustrine sediment and suggests that selection of appropriate lakes can provide records of terrestrial change where other related records are not available.  相似文献   

16.
An 11.6 m long continuous succession of annually laminated sediments from Lake Korttajärvi in central Finland was investigated for the isotopic composition of carbon and hydrogen in organic matter. The sequence covers a time period of 9590 years, and the varve chronology has been thoroughly described in earlier studies. From 7100 to 4400 BC the lake was part of the Ancient Lake Päijänne, but in 4400 BC it became separated and formed the present independent lake system. Two organic fractions were investigated. One fraction obtained by HCl-treatment was analyzed for δ13C and another HCl-HF-digested organic fraction was analyzed for both δ13C and δD. The isotopic data were compared to atomic C/N ratios, carbon contents, diatom-inferred pH values and other environmental parameters. The diatom-inferred pH values and organic carbon contents provide evidence for a long-term change towards more acidic conditions and lower productivity in Lake Korttajärvi. The inferred pH values decrease from 7.0 to 6.1, followed by a slight increase during the last millennia. Variations in pH are accompanied by an increase in the δ13CHCl-HF values of organic matter from ?31.6 to $-29.2\permilleAn 11.6 m long continuous succession of annually laminated sediments from Lake Korttaj?rvi in central Finland was investigated for the isotopic composition of carbon and hydrogen in organic matter. The sequence covers a time period of 9590 years, and the varve chronology has been thoroughly described in earlier studies. From 7100 to 4400 BC the lake was part of the Ancient Lake P?ij?nne, but in 4400 BC it became separated and formed the present independent lake system. Two organic fractions were investigated. One fraction obtained by HCl-treatment was analyzed for δ13C and another HCl-HF-digested organic fraction was analyzed for both δ13C and δD. The isotopic data were compared to atomic C/N ratios, carbon contents, diatom-inferred pH values and other environmental parameters. The diatom-inferred pH values and organic carbon contents provide evidence for a long-term change towards more acidic conditions and lower productivity in Lake Korttaj?rvi. The inferred pH values decrease from 7.0 to 6.1, followed by a slight increase during the last millennia. Variations in pH are accompanied by an increase in the δ13CHCl-HF values of organic matter from −31.6 to , followed by a subtle decrease to . The changes in pH and δ13CHCl-HF are closely related (r = − 0.91, P < 0.01), and apparently reflect changing environmental conditions in the lake and in its catchment area. δD values show a marked shift to higher values during the early Holocene, which may be partly related to a climatic amelioration leading to the Holocene Climatic Optimum in 6000–2500 BC. The Medieval Warm Period in AD 980–1250 is associated with a local maximum in δD, lending support for a significant warming during that time.  相似文献   

17.
Abundant ostracode valves (Cyprinotus cingalensis) and caryopses of Urochloa paspaloides, a terrestrial grass, were well preserved in the lacustrine sediments of the Cattle Pond on Dongdao Island, South China Sea. Oxygen and carbon isotopes, and elements (Ca, Mg) were analyzed on ostracode valves and plant caryopses in this study. The δ18Oostracode and δ13Costracode exhibited a positive and statistically significant correlation, and showed a decreasing trend toward the top of sediment sequence with some fluctuations, indicating a gradual increase in effective moisture. The Mg/Ca ratios in the ostracode shells, generally used as a proxy for salinity changes in lake water, showed a trend toward lower values in the upper samples, reflecting a gradual decrease of salinity in the lake. The δ13Corg values in the plant caryopses of the upper 14 cm of sediment have lower values than those in the bottom sediments, suggesting less water and salinity stress. These results indicate increasing effective moisture and rainfall intensity over the past ∼1,100 years on Dongdao Island.  相似文献   

18.
An 84 cm sediment core collected from the center of Devils Lake, North Dakota, was analyzed at 1-cm intervals for,210Pb,137Cs, sediment conductivity, the concentrations of, biogenic silica, total organic carbon, carbon to nitrogen ratio, and the carbon and nitrogen isotopic composition of the organic fraction. Variations in210Pb activities in the upper 20 centimeters indicate that sediment accumulations rates in Devils Lake are not constant, and that accumulation rates were highest during periods of high lake level. The mean sedimentation accumulation rate was calculated as 0.24 cm–1 yr. The137Cs profile is characterized by near-surface maximum concentrations, possibly the result of redistribution of137Cs during salinity excursions.Biogenic silica is strongly correlated to lake level in Devils Lake. Periods of low lake level (characterized by high sediment conductivity) correspond to low biogenic silica concentrations. The trends in biogenic silica are attributed to variations in diatom productivity in the lake and to variations in sediment accumulation rates. Based on biogenic silica content and the composition of organic matter in the sediment (total organic carbon, carbon:nitrogen ratio and the 13C and 15N composition of total organic matter), paleobiologic conditions of Devils Lake during low lake stands were characterized by, (1) decreased primary productivity, (2) decreased input of detrital organic matter, and (3) increased nitrogen availability.During the 350 years of sediment accumulation represented by the 84-cm sediment core Devils Lake has experienced two periods of sustained high lake level; one between about 130 and 170 years ago (1820 to 1860 A.D.) and the second between 270 and 310 years ago (1680 to 1720 A.D.). Devils Lake experienced a period of intense drying about 260 years ago (1720 A.D.).  相似文献   

19.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

20.
Records from lake sediment cores are critical for assessing the relative stability of climate and ecosystems over the Holocene. Duck Lake in south-central Lower Michigan, USA, was the focus of a study that identified how changes in the geochemical variables in lake sediments relate to variations in regional climate and local land use during the Holocene. More than 8.5 m of lacustrine sediment were recovered using Livingston and freeze corers and analyzed for organic carbon, inorganic (carbonate) carbon, total nitrogen, and trace metals. Repeating packages of sediment (1–10 cm thick) that grade from light (inorganic carbon-rich) to dark (organic carbon-rich) were found from the surface to a depth of about 8 m. Variations in the high-resolution gray scale data from core X-radiographs are highly correlated to the relative amount of inorganic carbon. Geochemical analyses of the upper 8.5 m of sediment revealed a wide range of values: 0.05–10.6% for inorganic carbon (i.e. 0.5–89% calcium carbonate) and 1.1–28% for organic carbon (i.e. 2.7–70% organic matter). Organic carbon to nitrogen ratios indicate that most of the sediment organic matter is produced within the lake. A core chronology based on eight AMS radiocarbon dates shows low sediment accumulation rates (0.05 cm/year) from 10,000 to 3,800 cal year BP and higher sediment accumulation rates (0.1–0.3 cm/year) from 3,800 cal year BP to present. We suggest that carbonate accumulates during relatively dry times, whereas organic matter accumulation dominates when nutrient input to the lake is enhanced by wetter climate. The Duck Lake core records a distinct low point in inorganic carbon deposition that may be related to the 8.2 ka cooling event now documented from several sites in North America. Spectral analysis of gray scale values shows significant ~200-year periodicities over the past 8,000 years, hypothesized to result from climate changes induced by solar forcing. Concentrations of trace metals (e.g. lead, iron, copper, zinc) indicate the onset of regional anthropogenic influence about 150 cal year BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号