首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area(NCHH).It was found that the haze-prone period has changed from winter into a whole year,and the haze days(HD)in winter have increased significantly.The foggy days(FD)are half of HD.There are little difference on the number of days and trends of fog at various levels.The HD and FD show no obvious positive correlation until the 1980s.Fog has larger spatial scale,showing more in the south than in the north.Haze occurs mainly around large cities with a discrete distribution.In the background of weakened East Asian Winter Monsoon(EAWM)and sufficient particulate matter,the negative correlation between haze and wind speed is weakened,but the positive correlation between haze and moisture conditions(precipitation and humidity)is significantly strengthened.In recent years,small wind and variability appear frequently.Meanwhile,as the stable source and strong moisture absorption of the aerosol particles,the moisture condition becomes one key control factor in the haze,especially wet haze with less visibility.In contrast,the FD presents a stable positive correlation with precipitation and relative humidity,but has no obvious negative correlation with wind speed.  相似文献   

2.
Our analysis of fog and haze observations from the surface weather stations in China in recent 50 years(from 1961 to 2011)shows that the number of fog days has experienced two-stage variations,with an increasing trend before 1980 and a decreasing trend after 1990.Especially,an obvious decreasing trend after 1990 can be clearly seen,which is consistent with the decreasing trend of the surface relative humidity.However,the number of haze days has demonstrated an increasing trend.As such,the role of reduction of atmospheric relative humidity in the transition process from fog into haze has been further investigated.It is estimated that the mean relative humidity of haze days is about 69%,lower than previously estimated,which implies that it is more difficult for the haze particles to transform into fog drops.This is possibly one of the major environmental factors leading to the reduction of number of fog days.The threshold of the relative humidity for transition from fog into haze is about82%,also lower than previously estimated.Thus,the reduction of the surface relative humidity in China mainly due to the increase of the surface temperature and the saturation specific humidity may exert an obvious impact on the environmental conditions for the formations of fog and haze.In addition,our investigation of the relationship between haze and visibility reveals that with the increase of haze days,the visibility has declined markedly.Since 1961,the mean visibility has dropped from 4–10to 2–4 km,about a half of the previous horizontal distance of visibility.  相似文献   

3.
Fog is an atmospheric phenomenon that has important environmental consequences related to visibility, air quality and climate change on local and regional scales. The formation of radiation fog results from a complex balance between surface radiative cooling, turbulent mixing in the surface layer, aerosol growth by deliquescence and activation of fog droplets. During the ParisFog field experiment, out of 16 events forecasted for radiation fog, activated fog materialized in seven events, while in five other events the visibility dropped to 1–2 km but haze particle size remained below the critical size of activation. To better understand the conditions that lead to or do not lead to sustained fog droplet activation, we performed a comparative study of dynamic, thermal, radiative and microphysical processes occurring between sunset and fog (or quasi-fog) onset. We selected two radiation fog events and two quasi-radiation fog events that occurred under similar large-scale conditions for this comparative study. We identified that aerosol growth by deliquescence and droplet activation actually occurred in both quasi-fog events, but only during <1 h. Based on ParisFog measurements, we found that the main factors limiting sustained activation of droplets at fog onset in the Paris metropolitan area are (1) lack of mixing in the surface layer (typically wind speed <0.5 ms?1), (2) relative humidity exceeding 90 % throughout the residual layer, (3) low cooling rate in the surface layer (typically less than ?1 °C per hour on average) due to weak radiative cooling (0 to ?30 Wm?2) and near zero sensible heat fluxes, and (4) a combination of the three factors listed above during the critical phase of droplet activation preventing the transfer of cooling from the surface to the liquid layer. In addition, we found some evidence of contrasted aerosol growth by deliquescence under high relative humidity conditions in the four events, possibly associated with the chemical nature of the aerosols, which could be another factor impacting droplet activation.  相似文献   

4.
中国华北雾霾天气与超强El Ni?o事件的相关性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
2015年11—12月,全国接连发生七次大范围、持续性雾霾天气过程,其中,11月27日—12月1日的雾霾天气过程持续时间长达五天,成为2015年最强的一次重污染天气过程;12月19-25日重度雾霾再次发展,影响面积一度达到35.2万km~2.本文利用多种数据资料通过个例对比和历史统计详细分析了超强El Ni?o背景下雾霾天气频发的天气气候条件.其结果清楚表明:2015年11—12月欧亚中高纬度以纬向环流为主,东亚冬季风偏弱,使得影响我国的冷空气活动偏少,我国中东部大部地区对流层低层盛行异常偏南风,大气相对湿度明显偏大,并且大气层结稳定,对流层底层存在明显逆温.上述大气环流条件使得污染物的水平和垂直扩散条件差,因此在有一定污染排放的情况下,造成了重度雾霾天气过程的频发.由此,超强El Ni?o事件所导致的大尺度大气环流异常是我国中东部,尤其华北地区冬季雾霾天气频发的重要原因之一.  相似文献   

5.
6.
Low Visibility Formation and Forecasting on the Northern Coast of Brazil   总被引:1,自引:0,他引:1  
Visibility analysis and forecast at the Maceio International Airport in the Brazilian Northeast (NEB) was the principal goal of this investigation. Surface meteorological data of the Maceio International Airport were used for low visibility frequency study. Low visibility in NEB was provoked more frequently by light fog (LF) formation (1,098 or 92 h month?1 on average). Haze and fog were very rare (81 h and one event per year, respectively on average). Light fog with a visibility less than 2 km usually was detected together with rain or drizzle. Low visibility was observed more frequently at night and during the rainy season. Applications of the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for light fog forecast were tested. Thermodynamic processes were studied by vertical profile, elaborated by: (1) National Centers for Environmental Prediction (NCEP) reanalysis data for Maceio (because of some radiosonde absence) and (2) forecast vertical temperature and humidity profiles were produced, using Air Parcels Trajectories of the HYSPLIT model at the pattern levels. The synoptic situations before and during low visibility phenomena were analyzed using different products of NCEP reanalysis, the high resolution (10 km) ETA model and infrared satellite images. Wave disturbance in the trade winds field, localized on the northwest periphery of the South Atlantic subtropical High, usually accompanied the phenomena. A humidity advection, weak ascendant movement and thermal inversion absence at the low levels were created by these waves. The middle level’s descendent movement provoked the humidity accumulation at levels below. Satisfactory results of the HYSPLIT model applications for light fog forecast were obtained with 12 h antecedence. In particular, stable level forecast by the ETA model was forecast satisfactorily with 12 h antecedence; vertical movements were predicted better with up to 48 h antecedence. The PSU/NCAR mesoscale model (MM5) and PAFOG models were tested for analysis and forecast of an intensive fog event. Intensive fog provoked a fatal accident of a small airplane near the Maceio Airport in 2007. These fog formation processes were studied by NCEP reanalysis data, the high resolution regional model MM5, and satellite and radar data. Fog formation was simulated by PAFOG model and satisfactory results were obtained with 10 h antecedence.  相似文献   

7.
— Air pollution episodes as a result of forest fires in Brunei Darussalam and neighbouring regions have reached hazardous levels in recent years. Such episodes are generally associated with poor visibility and air quality conditions. In the present study, data on PM10 (particulate matter of size less than 10 microns) and CO in Brunei Darussalam have been considered to study the incidence of respiratory diseases whereas data on relative humidity (RH) in addition to PM10 have been used to explain the visibility with a particular emphasis on haze episode during 1998.¶Initial exploratory analysis indicates significant correlation of visibility with PM10 and RH. An attempt has been made to explain visibility on the basis of PM10 and RH using multiple linear regression analysis. The regression model shows that PM10 and RH are two significant factors affecting the visibility at a given site. Further, canonical correlation, a multivariate method of analysis, has been used to explain the incidence of respiratory diseases as a function of air quality during the haze period. The results indicate that PM10 and CO levels during the haze period have a significant bearing on the incidence of respiratory diseases (Asthma, Acute Respiratory Infections and Influenza (ARII)).  相似文献   

8.
Forecast of Low Visibility and Fog from NCEP: Current Status and Efforts   总被引:2,自引:0,他引:2  
Based on the visibility analysis data during November 2009 through April 2010 over North America from the Aviation Digital Database Service (ADDS), the performance of low visibility/fog predictions from the current operational 12?km-NAM, 13?km-RUC and 32?km-WRF-NMM models at the National Centers for Environmental Prediction (NCEP) was evaluated. The evaluation shows that the performance of the low visibility/fog forecasts from these models is still poor in comparison to those of precipitation forecasts from the same models. In order to improve the skill of the low visibility/fog prediction, three efforts have been made at NCEP, including application of a rule-based fog detection scheme, extension of the NCEP Short Range Ensemble Forecast System (SREF) to fog ensemble probabilistic forecasts, and a combination of these two applications. How to apply these techniques in fog prediction is described and evaluated with the same visibility analysis data over the same period of time. The evaluation results demonstrate that using the multi-rule-based fog detection scheme significantly improves the fog forecast skill for all three models relative to visibility-diagnosed fog prediction, and with a combination of both rule-based fog detection and the ensemble technique, the performance skill of fog forecasting can be further raised.  相似文献   

9.
A vertical sounding of severe haze process in Guangzhou area   总被引:1,自引:0,他引:1  
We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.  相似文献   

10.
Microphysical measurements of orographic fog were performed above a montane cloud forest in northeastern Taiwan (Chilan mountain site). The measured parameters include droplet size distribution (DSD), absolute humidity (AH), relative humidity (RH), air temperature, wind speed and direction, visibility, and solar short wave radiation. The scope of this work was to study the short term variations of DSD, temperature, and RH, with a temporal resolution of 3?Hz. The results show that orographic fog is randomly composed of various air volumes that are intrinsically rather homogeneous, but exhibit clear differences between each other with respect to their size, RH, LWC, and DSD. Three general types of air volumes have been identified via the recorded DSD. A statistical analysis of the characteristics of these volumes yielded large variabilities in persistence, RH, and LWC. Further, the data revealed an inverse relation between RH and LWC. In principle, this finding can be explained by the condensational growth theory for droplets containing soluble or insoluble material. Droplets with greater diameters can exist at lower ambient RH than smaller ones. However, condensational growth alone is not capable to explain the large observed differences in DSD and RH because the respective growth speeds are too slow to explain the observed phenomena. Other mechanisms play key roles as well. Possible processes leading to the large observed differences in RH and DSD include turbulence induced collision and coalescence, and heterogeneous mixing. More analyses including fog droplet chemistry and dynamic microphysical modeling are required to further study these processes. To our knowledge, this is the first experimental field observation of the anti-correlation between RH and LWC in fog.  相似文献   

11.
In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric background fields and daily evolution in January 2013.The results show that a weak East Asian winter monsoon existed in January2013.Over eastern China,the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China.An anomalous high at 500 hPa suppresses convection.The weakened surface winds are favorable for the fog and haze concentrating in eastern China.The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere.The anomalous inversion in near-surface increases the stability of surface air.All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China.The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze.The larger(smaller)they are,the weaker(stronger)the fog and haze are.The thermodynamic effects include stratification instability in middle and lower troposphere and the inversion and dew-point deficit in near-surface.The larger(smaller)the stratification instability and the inversion are,the stronger(weaker)the fog and haze are.Meanwhile,the smaller(larger)the dewpoint deficit is,the stronger(weaker)the fog and haze are.Based on the meteorological factors,a multi-variate linear regression model is set up.The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evolution are almost the same.The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68,which explains more than 2/3 of the variance.  相似文献   

12.
Summary Transmissometer records at Schiphol-Airport, Amsterdam have been analyzed to show the frequencies of visibility changes, in periods between 1 and 16 minutes, on occasions that the visibility is below 1000 metres for at least 30 minutes. Tables are presented for the frequencies of visibility changes in shallow and in deep fog, both for increasing and decreasing visibilities, with an initial visibility in the range of 60–1000 metres (the lower limit of this range is connected with the length of the transmissometer-baseline in use).In deep fog the probability of a visibility change surpassing 25 percent is about 1 percent after 1 minute and 20 percent after 16 minutes if the initial visibility is between 100 and 200 metres. The corresponding figures in shallow fog are 7 and 55 percent. If the initial visibility is between 200 and 400 metres, the corresponding figures in deep fog are 5 and 45 percent and in shallow fog 26 and 84 percent.  相似文献   

13.
施晓晖  徐祥德 《地球物理学报》2012,55(10):3230-3239
针对2011年12月初北京及华北持续近一周的严重大雾天气这一热点事件,从城市群大雾过程气溶胶区域影响的视角,基于"973"项目"北京及周边地区大气-水-土环境污染机理与调控原理"的研究工作,就北京及周边地区大雾天气与大气气溶胶区域影响的关系等方面进行了讨论.研究表明,北京城市大雾前低空SO2和NO2浓度存在"积聚"与"突增"现象.北京及周边地区冬季雾日数和气溶胶光学厚度则呈正相关,并具有"同位相"的年际变化趋势.研究同时发现北京及其南部周边的冬季气溶胶高值区呈南北向带状分布,其与北京周边居民户数高值区有所吻合,反映了冬季北京城市气溶胶颗粒物的远距离影响源区及大尺度输送效应.统计分析指出,冬季北京气溶胶颗粒物PM10、PM2.5主要影响成分是SO2和NOX,且有关研究也表明,电厂、采暖和工业面源是SO2的三大本地排放源,而机动车、电厂、工业为NOX的三大本地排放源,上述大气PM10、PM2.5主成分污染源亦与雾水样本化学分析结果相吻合,即冬季由于燃煤在生活能源中的比例较大,北京雾水中硫元素和碳元素的含量都较高.因此,北京冬季大雾不仅与北京城区气溶胶及其污染排放影响存在相关关系,而且与北京周边天津、河北、山东等地气溶胶及大气污染物的远距离输送和气溶胶区域影响效应有着重要的联系.因此,北京雾霾天气及相关大气污染的治理工作首先要着眼于局地污染物的减排,但同时如何做好区域大气污染的协同治理也是不容忽视的问题.  相似文献   

14.
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.  相似文献   

15.
A combined Raman–Rayleigh lidar has been designed at Chung-Li, Taiwan for the simultaneous measurement of water-vapor mixing ratio, temperature and extinction-to-backscatter ratio of aerosol in the lower troposphere. The technique of Raman–Rayleigh lidar can retrieve correct temperature profile in the lower troposphere where the measurements are underestimated due to the aerosol loading. Two typical cases are discussed under different humidity (dry/wet) conditions. The water vapor and temperature profile have shown a good agreement with radiosonde. Simultaneous measurement of Raman–Rayleigh lidar also illustrates the physical nature of the aerosol and is useful in understanding the effects of humidity on aerosol swelling.  相似文献   

16.
The relationship between liquid water content (LWC) and visibility (VIS) in a fog was examined by a field measurement of LWC values at a clean location of the meteorological observatory Sodankylä (Finland) and in a polluted region at the meteorological observatory Mile?ovka (Czech Republic). Furthermore, the use of a simple regression fog model to determine LWC from VIS is examined by comparing well-known relationships with the measurement results. The results show that the verbal characterization of environment (clean, mild polluted, polluted) is insufficient to calculate the LWC values from visibility. It is necessary to establish an additional criterion based on quantitative fog characteristics or to determine the site-related equation from the previous LWC and VIS measurement.  相似文献   

17.
Fog Simulations Based on Multi-Model System: A Feasibility Study   总被引:1,自引:0,他引:1  
Accurate forecasts of fog and visibility are very important to air and high way traffic, and are still a big challenge. A 1D fog model (PAFOG) is coupled to MM5 by obtaining the initial and boundary conditions (IC/BC) and some other necessary input parameters from MM5. Thus, PAFOG can be run for any area of interest. On the other hand, MM5 itself can be used to simulate fog events over a large domain. This paper presents evaluations of the fog predictability of these two systems for December of 2006 and December of 2007, with nine regional fog events observed in a field experiment, as well as over a large domain in eastern China. Among the simulations of the nine fog events by the two systems, two cases were investigated in detail. Daily results of ground level meteorology were validated against the routine observations at the CMA observational network. Daily fog occurrences for the two study periods was validated in Nanjing. General performance of the two models for the nine fog cases are presented by comparing with routine and field observational data. The results of MM5 and PAFOG for two typical fog cases are verified in detail against field observations. The verifications demonstrated that all methods tended to overestimate fog occurrence, especially for near-fog cases. In terms of TS/ETS, the LWC-only threshold with MM5 showed the best performance, while PAFOG showed the worst. MM5 performed better for advection–radiation fog than for radiation fog, and PAFOG could be an alternative tool for forecasting radiation fogs. PAFOG did show advantages over MM5 on the fog dissipation time. The performance of PAFOG highly depended on the quality of MM5 output. The sensitive runs of PAFOG with different IC/BC showed the capability of using MM5 output to run the 1D model and the high sensitivity of PAFOG on cloud cover. Future works should intensify the study of how to improve the quality of input data (e.g. cloud cover, advection, large scale subsidence) for the 1D model, particularly how to eliminate near-fog case in fog forecasting.  相似文献   

18.
The variation of potential gradient in mist, haze, and fog has been studied. During the formation of these hydrometers the potential gradients were found to increase. Large positive potential gradients were observed during dense fog conditions. Possible charge generation mechanisms responsible for these potential gradients during fog formation are discussed.  相似文献   

19.
Fog Research: A Review of Past Achievements and Future Perspectives   总被引:20,自引:0,他引:20  
The scientific community that includes meteorologists, physical scientists, engineers, medical doctors, biologists, and environmentalists has shown interest in a better understanding of fog for years because of its effects on, directly or indirectly, the daily life of human beings. The total economic losses associated with the impact of the presence of fog on aviation, marine and land transportation can be comparable to those of tornadoes or, in some cases, winter storms and hurricanes. The number of articles including the word ``fog' in Journals of American Meteorological Society alone was found to be about 4700, indicating that there is substantial interest in this subject. In spite of this extensive body of work, our ability to accurately forecast/nowcast fog remains limited due to our incomplete understanding of the fog processes over various time and space scales. Fog processes involve droplet microphysics, aerosol chemistry, radiation, turbulence, large/small-scale dynamics, and surface conditions (e.g., partaining to the presence of ice, snow, liquid, plants, and various types of soil). This review paper summarizes past achievements related to the understanding of fog formation, development and decay, and in this respect, the analysis of observations and the development of forecasting models and remote sensing methods are discussed in detail. Finally, future perspectives for fog-related research are highlighted.  相似文献   

20.
利用AERONET资料对珠三角地区气溶胶物理性质特征进行分析,建立珠三角地区的气溶胶模型,在此基础上,根据RT3 辐射传输模型构建矢量查找表,采用多角度偏振方法从PARASOL L1B数据反演得到细模态气溶胶光学厚度(AOD),最后采用2007-2009年MODIS总的AOD产品和本文的细模态AOD三年的反演结果分析了珠三角地区气溶胶的时间变化和空间分布特征,为深入研究珠三角地区污染物的局地排放和输送提供了条件.结果表明:(1)珠三角地区对流层气溶胶呈双峰型对数正态分布,其中细粒子平均半径主要集中在0.05~0.1,标准方差以0.5、0.6为主,粗粒子平均半径以0.9、1.0为主,标准方差为0.6、0.7,复折射指数实部以1.4、1.5 居多,虚部以0、0.01为主,细粒子所占比例大于70%,珠三角气溶胶呈现出粗颗粒物和细颗粒物并存的特征;(2)PARASOL业务算法中的气溶胶模型在珠三角地区有较大的局限性,引入当地气溶胶模型使细模态AOD的反演精度较卫星产品有了很大提高,细模态AOD主要反映了珠三角地区二次污染的强度;(3)珠三角地区总AOD值春季较大,秋夏季次之,冬季较小,并呈现逐年较小的趋势;(4)珠三角地区细模态AOD也在逐年降低,2009年细模态AOD年均值比2007年低了0.02,在空间分布上,高值地区主要集中在广州、佛山、中山等城市.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号