首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The accretion of oceanic plateaus has played a significant role in continental growth during Earth's history, which is evidenced by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. However, oceanic plateaus can also be subducted into the deeper mantle, as revealed by seismic tomography. The controlling factors of accretion versus subduction of oceanic plateaus remain unclear. Here, we investigate the dynamics of oceanic plateau accretion at active continental margins using a thermo-mechanical numerical model. Three major factors for the accretion of oceanic plateaus are studied: (1) a thinned continental margin of the overriding plate, (2) “weak” layers in the oceanic lithosphere, and (3) a young oceanic plateau. For a large oceanic plateau, the modes of oceanic plateau accretion can be classified into one-sided and two-sided subduction–collisional regimes, which mainly depend on the geometry of the continental margin (normal or thinned). For smaller-sized seamounts, accretion occurs only if all three factors are satisfied, of which a thinned continental margin is the most critical. Possible geological analogues for the two-sided subduction–collisional mode include the Taiwan orogenic belt and subduction of the Ontong Java Plateau. The accretion model for small oceanic plateaus applies to the Nadanhada Terrane in Northeast China.  相似文献   

2.
Xuan Lyu  Zhifei Liu 《地球科学进展》2017,32(12):1307-1318
Oceanic red beds are widely distributed in the global oceans and across the entire Phanerozoic period, which mostly appeared after oceanic anoxic events. They represent typical oxygen-rich sedimentary environment and play a significant role on ocean science research. Numerous studies have been carried out since the oceanic red beds were discovered. However, previous studies mainly focused on the Cretaceous oceanic red beds, and the understanding of the characteristics and scientific significance of oceanic red beds are not comprehensive. Therefore, we here summarized the global distribution characteristics and compared mineral and element compositions of various lithological oceanic red beds, including marly, clayey and cherty oceanic red beds. The main mineral and element components of oceanic red beds have no direct relationship with the color of the sediments, and mainly are affected by the regional environment and provenances. Therefore, the mineralogical and geochemical characteristics of oceanic red beds should be analyzed in combination with the regional background. The red coloration of oceanic red beds is controlled mainly by hematite, goethite and manganese-bearing calcite, which have two main mechanisms: ① Colored minerals formed in oxic conditions; ② Colored minerals formed due to low deposition rates. These two mechanisms are not completely independent, but complement one another with either dominance in most oceanic red beds. Lithological characteristics of oceanic red beds are controlled by three factors, including water depth, productivity and nutrients. Therefore, the formation of oceanic red beds should be considered with global changes and regional events. The unique origin mechanism and global distribution characteristics of long time-scale oceanic red beds can be used to indicate sedimentary paleoenvironment, paleo-oceanic current, and paleoclimate change. In addition, hydrothermal or magmatic activities on the ocean floor could also produce red-color deposits that are strongly different from sedimentary oceanic red beds. Based on the existing research, we also put forward the future in-depth studies on the oceanic red beds from multidisciplinary perspectives.  相似文献   

3.
For the last two decades, Iceland and other oceanic plateaux have been considered as potential analogues for the formation of the early Earth's continental crust. This study examines the compositions of silicic rocks from modern oceanic plateaux, revealing their differences to Archaean continental rock types (trondhjemite–tonalite–granodiorite or TTG) and thereby emphasising the contrasted mechanisms and/or sources for their respective origins. In most oceanic plateaux, felsic magmas are thought to be formed by fractional crystallization of basalts. In Iceland, the interaction between mantle plume and the Mid‐Atlantic ridge results in an abnormally high geothermal gradient and melting of the hydrated metabasaltic crust. However, despite the current `Archaean‐like' high geothermal gradients, melting takes place at a shallow depth and is unable to reproduce the TTG trace element signature. Consequently, oceanic plateaux are not suitable environments for the genesis of the Archaean continental crust. However, their subduction could account for the episodic crustal growth which has occurred throughout the Earth's history.  相似文献   

4.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

5.
There are numerous controversies surrounding the tectonic properties and evolution of the Proto-South China Sea(PSCS).By combining data from previously published works with our geological and paleontological observations of the South China Sea(SCS),we propose that the PSCS should be analyzed within two separate contexts:its paleogeographic location and the history of its oceanic crust.With respect to its paleogeographic location,the tectonic properties of the PSCS vary widely from the Triassic to the mid-Late Cretaceous.In the Triassic,the Paleo-Tethys and the Paleo-Pacific Oceans were the major causes of tectonic changes in the SCS,while the PCSC may have been a remnant sea residing upon Tethys or Paleo-Pacific oceanic crust.In the Jurassic,the Meso-Tethys and the Paleo-Pacific oceans joined,creating a PSCS back-arc basin consisting of Meso-Tethys and/or Paleo-Pacific oceanic crust.From the Early Cretaceous to the midLate Cretaceous,the Paleo-Pacific Ocean was the main tectonic body affecting the SCS;the PSCS may have been a marginal sea or a back-arc basin with Paleo-Pacific oceanic crust.With respect to its oceanic crust,due to the subduction and retreat of the Paleo-Pacific plate in Southeast Asia at the end of the Late Cretaceous,the SCS probably produced new oceanic crust,which allowed the PSCS to formally emerge.At this time,the PSCS was most likely a combination of a new marginal sea and a remnant sea;its oceanic crust,which eventually subducted and became extinct,consisted of both new oceanic crust and remnant oceanic crust from the Paleo-Pacific Ocean.In the present day,the remnant PSCS oceanic crust is located in the southwestern Nansha Trough.  相似文献   

6.
A model of ocean-crust accretion for the Superior province, Canada   总被引:5,自引:0,他引:5  
One of the keys to understanding the origin of Archaean greenstone belts lies in the geological relationships between mafic and ultramafic greenstones, felsic to intermediate volcanic rocks and terrigenous sediments. Traditional models for greenstone belt evolution have been based on in-situ stratigraphic relationships. Most of these models, for example an oceanic island-arc developed on oceanic basement, back-arc basins, and the recently popular plume model, predict concordant stratigraphic relationships among the various greenstone belt lithologies. However, rather than being depositional in nature, several authors have indicated that many of the relationships between the different lithologies in greenstone belts are in fact tectonic, suggesting an allochthonous origin for most greenstone sequences. All of these latter models make analogies to Phanerozoic tectonic processes involving accretion of oceanic materials with volcanism related to both plate subduction and rifting.

In this paper, we have evaluated the geological relationships between volcanic rocks and sediments in three regions in the Superior province, where the accretion of oceanic material can be documented, and direct comparisons are made to geological processes in Phanerozoic accretionary complexes. In the Malartic area in the southeastern Abitibi Subprovince, 3 to 4 km thick slices of komatiite and tholeiite, with intercalated terrigenous sediment, are tectonically imbricated and are overlain by calc-alkaline volcanics which postdate tectonic stacking. In both the Larder Lake region of the southwestern Abitibi belt and in the Beardmore-Geraldton belt, at the south-eastern limit of the Wabigoon belt, slices of iron-rich tholeiite and chemical sediments of an oceanic origin are tectonically imbricated with terrigenous sediment.

The Malartic-Val d'Or area is considered to be an example of accretion of an Archaean oceanic plateau, while the Larder Lake and the Beardmore-Geraldton regions are potentially typical of accretion of normal oceanic crust in an arc-environment. Phanerozoic accretion of oceanic crust is accompanied by a step-back in subduction, and in this paper we suggest that oceanic crust accretion may have been the principal mechanism by which the locus of subduction migrated towards the south of the Superior province. Asthenospheric upwelling associated with the isolated sinking plate may have been responsible for widespread late-magmatism. This scenario requires that magmas be erupted through previously accreted volcanic, plutonic and sedimentary material. Furthermore, later ridge subduction will result in transpressional tectonics and eruption of mafic sequences over mature and immature volcano-plutonic sequences. The combined result of the plate tectonic scenario envisaged would result in the well-described “cyclic stratigraphy” of many granite greenstone sequences.  相似文献   


7.
本文选取巴颜喀拉山群复理石沉积中砂岩、粉砂岩样品,进行主量元素地球化学分析,并利用分析结果对其物源区沉积大地构造背景进行判别。结果显示,晚三叠世巴颜喀拉山群物源主要来自大洋岛弧,少量来自大陆岛弧,表明当时研究区处于邻近大洋岛弧的周缘前陆盆地环境。  相似文献   

8.
A large number of records of near earthquakes, for the period 1950–1975, have been revised at Toledo Observatory (I.G.C.), looking for clear trains of surface waves.All records used correspond to the Wiechert, WWSS or HGLP seismometers of this station.Multiple filtering techniques have been applied to the selected seismograms to obtain Love and Rayleigh fundamental mode dispersion curves.As most of the paths are of mixed continental and oceanic structure, the first interpretation has been made considering an average model for each set of similar seismic paths. However, for some regions, the separation of the two structures (pure continental and pure oceanic) has been attempted.  相似文献   

9.
西太平洋区域是全球地质构造和海陆相互作用最活动的区域,经过50多年的大洋钻探研究,人们对西太平洋弧后海底扩张成因、俯冲工厂的动力学机制、地幔演化过程、发震带、热点岩浆活动、沉积古环境等都有了深入研究和分析,但是西太平洋边缘海盆具有很大的构造多样性和复杂性,仍然有很多的科学目标和科学问题有待进一步开展研究.本文详细分析了边缘海盆的大洋岩石圈演化特殊性,原位上地幔蛇纹岩化的程度,初始俯冲与初始扩张的形成机制,海台、海山、海岭、洋脊、洋隆的属性,洋中脊水热循环活动的强度及其对大洋岩石圈演化的影响,岩石圈共轭张裂与破裂模式与机制,大洋红层与异常沉积这7个方面的科学问题,并建议就流体地球化学剖面、海山岩浆剖面、穆绍海沟与加瓜海脊、Ayu海槽、卡罗琳海岭系统、Eauripik海岭、冲绳海槽、莫霍面这8个关键具体目标开展详细的地球物理刻画并提出具有全球意义的钻探建议,为今后实现中国领导的全球大洋钻探工作提供思路.   相似文献   

10.
洋底高原:了解地球内部的窗口   总被引:4,自引:0,他引:4  
洋底高原是洋壳的重要组成部分,它是分布在洋底的一种面积广大、且具有异常洋壳厚度的区域。洋底高原通常规模巨大,绝大多数喷发于大洋环境,岩石组成主要为镁铁质到超镁铁质,岩石类型主要为拉斑玄武岩。大多数洋底高原的岩石组成较为相似,而且均形成于一期或两期时间较短却大规模集中喷发的岩浆活动,目前认为是大规模的热地幔物质从地幔深部上升到岩石圈底部,由于巨大地幔柱头部(地幔羽)引起的熔融作用形成的。正是由于洋底高原与地幔柱之间具有这种十分密切的关系,因此对洋底高原的研究将成为我们了解地球内部的窗口。以ODP对翁通-爪哇和凯尔盖朗(Kerguelen)海台的研究为例,简单介绍了洋底高原的基本特征、地幔柱在其形成过程中的作用以及目前在这一领域还未解决的一些问题。  相似文献   

11.
海洋初级生产力的卫星遥感   总被引:3,自引:0,他引:3  
从海水的光学特性入手,依据卫[JP2]星探测海洋初级生产力的基本原理,详细讨论了大气校正过程,并较为全面地阐述了现有的一些海洋初级生产力模式。通过列举个例对这些模式进行分类讨论,并对模式应用中的一些问题作出了分析和讨论,在此基础上指出了其存在的问题和发展的方向。  相似文献   

12.
洋脊分活动型和稳定型两种,柱状地质剖面由未固结沉积物和上、下洋壳三部分构成,横向断裂带发育。岩石蚀变、变质普遍,可与大陆拉斑玄武岩对比。洋脊正在进行两种成矿过程。近20年在洋脊发现的矿床(化)可分为11个类型,其中有的具有工业意义。洋脊研究的深入,将进一步揭示洋壳的奥秘,还将提高对陆壳以及整个地球历史演化进程中的沉积、岩浆、变质、成矿、成岩和构造等作用以及这些作用之间相互促进和制约关系的认识。  相似文献   

13.
The composition of residual matter after the segregation of the crust from the mantle is calculated. The most probable components of the mantle: garnet-peridotitic, pyrolitic and chondritic, were taken into consideration and the continental, oceanic and olivine-tholeiitic crust segregated from them. The probability of the existence of each of the proposed mantle types may be estimated as based on the obtained residual matter. It is established that the hypothesis of the pyrolitic mantle is the most acceptable.A comparison of the compositions of the continental and oceanic crust makes evident that there exist two types of differentiation processes in the upper mantle. One of them leads to the development of continents, the second of the oceanic areas. In the first case the partial melting in the mantle and the ascent of magma are accompanied by an additional evacuation of silica (?) and especially of potassium. This rise of supplementary light substance embraces the depths as great as 1000 km or more. In the case of oceanic crust such an additional rise of matter is absent since there only partial melting in the mantle takes place and accordingly the depth of the differentiation is much smaller.The differences in the process of the earth's differentiation may be easier explained if the mantle is assumed to be mobile, instead of an immobile mass. It is assumed that a differentiation of the primary matter of the planet takes place near the mantle-core boundary and that the uplift of the much lighter silicate differentiation is in the asthenosphere. On this level the mantle becomes partially melted and the resultant liquid rises into the crust. This liquid is enriched by sialic substances, particularly by potassium and may be by silica.In the regions where the rise of matter from great depth is lacking, continental crust is not formed, and oceanic crust is born.The above comparison leads in particular to the following additional conclusions: the chemical differences of the continental crust and the oceanic crust do not permit the hypotheses of continenta drift, nor of the spreading of the ocean floor and the transformation of the continental crust into oceanic. All these hypotheses become incompatible with the chemical composition of the crust.  相似文献   

14.
From the connnection between the homologous temperature T/Tm and the viscosity a stabilization effect at viscosities of about 1023 poise is achieved for T/Tm = 0.6–0.7. This most probably is the steady-state temperature in the upper mantles of terrestrial planets of similar composition and should be a function of pressure only. Solid-state convection in the (larger) planets is connected with deviations of temperature and viscosity from their steady-state values. Viscosity values are obtained from the uplift data of deglaciated shield areas and from the temperature and strain-rate values of oceanic plate movements. Differences in the homologous temperature of 0.1 between both regions result in differences in viscosity by two orders of magnitude, assuming the crystal size of the material to be equal. The lower viscosity values for oceanic regions may explain the absence of seismicity and the generally faster spreading rates of purely oceanic plates. From the analysis of the uplift data two creep laws are indicated. Also the temperature (T = 0.7 Tm) and the crystal size in the upper mantle (0.1–1 cm) has been obtained from these data. Diffusion creep with a linear relationship between stress and strain rate seems to be important for small stresses, below one bar. This kind of creep apparently exists during the final stage of isostatic uplift and in most parts of the oceanic asthenospheric flow. Dislocation or power-law creep prefers larger stresses like those found in regions of fast uplift, in descending oceanic plates, active plate marginsand perhaps in the depth range of reverse flow.  相似文献   

15.
The Mozambique Ocean is postulated to mark the huge oceanic basin of the East African Orogen and separated the continental components of eastern and western Gondwana, but only limited studies have considered the production of its oceanic crust. Here we present a combined analysis of petrological, geochronological, geochemical, and Sr–Nd–Hf isotopic data for the Early Neoproterozoic gabbros in the North Lhasa terrane, Tibet. Zircons from the gabbros yielded concordant ages of ca. 913–901 Ma. The gabbros display N‐MORB compositions with limited subduction input and are characterized by high positive zircon εHf(t) (+5.3 to +12.1) and whole‐rock εNd(t) (+5.6 to +6.5) values. They have not experienced significant crustal contamination but their compositions have been modified by extensive fractional crystallization. They are most likely derived from relatively high degree partial melting (>20%) of a spinel lherzolite source in a depleted mantle. Combined with observations from previous studies, we suggest that the generation of these gabbros was probably related to the incipient formation of oceanic crust in a back‐arc basin and they may mark a relic of the eastern Mozambique Ocean. To our knowledge, they are the oldest oceanic relic in the Tibetan Plateau.  相似文献   

16.
论陆内造山作用和陆内造山带   总被引:5,自引:0,他引:5  
杨志华  李勇  苏生瑞  周义 《矿物岩石》2001,21(3):169-172
中国大陆造山带按属性特征可以划分为三种类型和三个发展阶段,板块构造体制下的洋盆或过渡性洋盆转化造山带以后的板内沉积盆地与造山带的转化,是中国大陆岩石圈划时代的造山作用,形成最重要的造山带,那种只那造山带限制在洋盆俯冲碰撞阶段与中国造山带的实际相差甚远。  相似文献   

17.
Processing of the oceanic lithosphere in subduction zones gives rise to arc magmatism, and strong compositional links exist between trench input and arc output. Here we address the question whether these compositional links are sufficiently strong to allow for ‘tracing’ the composition of the sedimentary and igneous oceanic crust through the chemistry of arcs. The tracing approach hinges critically on whether key characteristics of the subducted slab are transmitted to arcs. Results from forward and inverse modeling, verified by observations from modern arc settings, demonstrate that elements Sr, Pb, Nd and Hf that are associated with radiogenic isotopes may preserve chemical characteristics of the subducted slab in arc magmas. The data indicate that the much thicker igneous subducted crust dominates the recycled flux to arcs. The flux from the highly enriched, but thin sediment layer is buffered, and may be even concealed, by the concomitant contributions from igneous crust, and/or subarc mantle, despite the much better visibility of sediment components in trace element and isotope space. Arc Pb and Pb isotopes are the most promising tracers that may capture the isotopic diversity of subducted MORB-type and OIB-type crust with sufficient temporal and spatial resolution. While arc Sr is also strongly controlled by the flux from the subducted crust, arc data may allow for distinguishing among radiogenic Sr recycled from altered oceanic crust or from subducted sediment in moderately radiogenic arcs (87Sr/86Sr < ~ 0.7045). Co-mingling of Nd and Hf from igneous subducted crust with mantle contributions mostly hinders the isotopic identification of subducted crust through arc chemistry. However, Nd and Hf may provide complementary information about the efficiency of recycling, and recycling via subduction erosion.The tracing approach appears feasible in Cenozoic arcs where much of the original subduction context is preserved. First results from the Izu Bonin and Central American arcs show that plate tectonic events like oceanic plate formation and destruction, subduction of hotspot tracks and the closure of oceanic gateways are recorded in the chemistry of arcs. A comparative evaluation of Cenozoic global arcs may hence significantly complement the information from the modern oceanic basins, help to obtain a more complete image of the oceanic crustal composition and implicate the geochemical processes by which it formed. Possibly, the tracing approach may also be useful in ancient, inactive arcs to obtain information on the composition of oceanic crust subducted in the geological past.  相似文献   

18.
李荫槐 《地质科学》1984,(2):127-138
青藏高原是地球上最高大和最雄伟的年青隆起区。对于它的形成和演化机制,一直是国内外地质和地球物理学者注意的问题之一。 近十年来,人们认为青藏高原的形成是由于相距千里之遥的印度板块向北漂移并与欧亚板块碰撞的结果。然而,根据作者对喀喇昆仑和喜马拉雅等地的野外考察及其深部地球物理资料的研究,提出青藏高原原来是一个统一的前震旦纪陆壳区,后经震旦纪以来多次的拉开和挤压碰撞而形成的新观点。这种拉开和挤压的运动方式,是深部鳗隆和慢拗的分异作用引起的。  相似文献   

19.
日本列岛下太平洋俯冲板块的精细结构   总被引:1,自引:0,他引:1  
尽管许多学者对日本列岛下的太平洋俯冲板块做了大量的研究,但板块内部的结构(比如板块厚度,板块内地震波速度随深度的变化以及洋壳的俯冲情况等)仍然不太清楚。利用日本地区密集台网收集到的中深和深发地震到时数据来探讨上述问题。采用三维射线追踪正演模拟法,首先利用333个远震计算得到了日本地区太平洋板块的厚度为85km;然后利用3283个地震(震源深度大于40km)的130227条P波到时进一步研究板块内部的精细结构。结果显示,沿深度方向6个地层段(间隔100km)内的速度扰动值分别为5.5%,4.0%,3.5%,2.5%,2.0%和6.0%,在40~500km范围内速度扰动随深度的增加而减小,这与温度随深度的变化情况相一致。当深度大于500km时,速度扰动突然增大到6.0%,分析认为该异常可能由发生在东亚大陆边缘下方的深发地震无法精确定位导致的。最后利用40~500km深度范围内的近震测试得到日本东北和北海道地区下方洋壳俯冲的深度均为110km,平均厚度分别为7.5km和5km,相对于一维模型的速度扰动分别为1%和-3%。这说明洋壳在俯冲到110km以深时,由于受温度和压力的影响,逐渐脱水、变质,直至与板块融合。通过分析震源与洋壳的位置关系,本研究认为北海道地区比东北地区下方的俯冲洋壳可能含有更多的流体(比如水),导致两地区洋壳内的速度相差如此之大。此外,因为日本南部与洋壳对应的区域多为海洋,观测台站较少,所以本研究无法测试得到该区域内的洋壳俯冲情况。  相似文献   

20.
论南沙海槽的地壳性质   总被引:10,自引:0,他引:10       下载免费PDF全文
苏达权  黄慈流 《地质科学》1996,31(4):409-415
根据海上地球物理测量,对四条剖面的重力和地震剖面资料进行联合正反演推算,结合已发表的国内外地质、地球物理资料对南沙海槽的地壳厚度及性质进行了分析。结果表明,南沙海槽的地壳为一个减薄的陆壳,从南沙微陆块向婆罗洲方向厚度减薄,具有类似大陆边缘从陆壳向洋壳过渡部位的地壳构造特征。顺着海槽的走向,地壳厚度变化趋势是从东北向西南变薄。从构造演化的角度分析,南沙海槽是古南海洋陆交界的边缘,由于古南海的闭合及晚白垩世以后婆罗洲逆时针方向旋转,海槽的大部分是陆壳,其西南端可能有残留的洋壳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号