首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermi卫星对GeV能段的河外伽马射线背景(Extragalactic Gamma-ray Background, EGB)进行了较为精确的测量, 极大提高了对高能伽马射线背景的认识, 但是在TeV能段, 使用空间探测器进行观测非常困难, 只能依赖地面伽马射线探测器, 如成像大气切伦科夫望远镜. 目前, 对于TeV能段的河外伽马射线背景的认识还不完善. 使用有低活跃状态能谱的61个TeV源(包含2个星暴星系、6个射电星系以及53个耀变体)的累计流量给出河外TeV伽马射线背景的下限. 结果显示, 低能段(0.5--4.5TeV)流量由两个临近的耀变体Mrk 421和Mrk 501主导, 贡献了大约58%的累计背景流量; 而大于4.5TeV的能段, 由3个已观测到10TeV以上能段流量的极端耀变体H 1426+428、1ES 1959+650以及1ES 0229+200主导. 最后分别探究了星暴星系、射电星系以及耀变体对河外TeV伽马射线背景的贡献, 不同耀变体子类对河外TeV伽马射线背景的贡献以及不同红移区间TeV源对河外伽马射线背景的贡献.  相似文献   

2.
The HESS experiment (High Energy Stereoscopic System), consisting of four imaging atmospheric Cherenkov telescopes (IACTs) in Namibia, has observed many extragalactic objects in the search for very high energy (VHE) γ-ray emission. These objects include active galactic nuclei (AGN), notably Blazars, Seyferts, radio galaxies, starburst galaxies and others. Beyond the established sources, γ-ray emission has been detected for the first time from several of these objects by HESS, and their energy spectra and variability characteristics have been measured. Multi-wavelength campaigns, including X-ray satellites, radio telescopes, and optical observations, have been carried out for AGNs, in particular for PKS 2155-304, H 2356-309 and 1ES 1101-232, for which the implications concerning emission models are presented. Also results from the investigations of VHE flux variability from the giant radio galaxy M 87 are shown. For the HESS Collaboration.  相似文献   

3.
X-ray and γ-ray observations can help understand the origin of the electron and positron signals reported by ATIC, PAMELA, PPB-BETS, and Fermi. It remains unclear whether the observed high-energy electrons and positrons are produced by relic particles, or by some astrophysical sources. To distinguish between the two possibilities, one can compare the electron population in the local neighborhood with that in the dwarf spheroidal galaxies, which are not expected to host as many pulsars and other astrophysical sources. This can be accomplished using X-ray and γ-ray observations of dwarf spheroidal galaxies. Assuming the signal detected by Fermi and ATIC comes from dark matter and using the inferred dark matter profile of the Draco dwarf spheroidal galaxy as an example, we calculate the photon spectrum produced by electrons via inverse Compton scattering. Since little is known about the magnetic fields in dwarf spheroidal galaxies, we consider the propagation of charged particles with and without diffusion. Extending the analysis of Fermi collaboration for Draco, we find that for a halo mass ∼109 M, even in the absence of diffusion, the γ-ray signal would be above the upper limits. This conclusion is subject to uncertainties associated with the halo mass. If dwarf spheroidal galaxies host local magnetic fields, the diffusion of the electrons can result in a signal detectable by future X-ray telescopes.  相似文献   

4.
The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy γ-rays which are attenuated en route to Earth by pair producing γγ interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the ∼10 GeV–10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and very high energy (VHE) γ-ray production models. Conversely, knowledge of the intrinsic γ-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of γ-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy γ-rays.  相似文献   

5.
6.
γ-ray is a unique probe for extreme events in the universe. Detecting the γ-ray provides an important opportunity to understand the composition of universe, the evolution of stars, the origin of cosmic rays, etc. γ-ray astronomy involves in various frontier scientific issues, and the observed energy spectrum spans over a wide range from a few hundreds of keV to a few hundreds of TeV. Different γ-ray telescopes are in need for different scientific goals and spectral bands. In this work, 5 kinds of space- and ground-based γ-ray observing techniques were summarized, including the Coded-aperture telescopes, Compton telescopes, Pair-production telescopes, Imaging Atmospheric Cherenkov Telescopes, and Extensive Air Shower Arrays. The progress in γ-ray astronomy in the past 70 years, motivated by the observation capability, was reviewed. Great achievements have been made in the high-energy domain and very-high-energy domain, while because of the limited missions conducted, as well as a lower sensitivity comparing with other domains, discoveries in low- and medium-energy are few, and due to the high observation difficulty, as well as the late start, relevant scientific yields in ultra- and extremely-high energy are limited. Moreover, the future planned missions and capabilities of the γ-ray telescopes and their possible scientific outputs were discussed. Among these missions, low- and medium-energy space telescopes e-ASTROGAM (enhanced-ASTROGAM), AMEGO (All-sky Medium Energy Gamma-ray Observatory), and very-high-energy ground-based arrays LHAASO (Large High Altitude Air Shower Observatory) and CTA (Cherenkov Telescope Array) greatly improve sensitivity than their corresponding last generation, thus expect very likely to further expand our knowledge on the γ-universe.  相似文献   

7.
8.
Colliding winds of massive binaries have long been considered as potential sites of non-thermal high-energy photon production. This is motivated by the detection of non-thermal spectra in the radio band, as well as by correlation studies of yet unidentified EGRET γ-ray sources with source populations appearing in star formation regions. This work re-considers the basic radiative processes and its properties that lead to high energy photon production in long-period massive star systems. We show that Klein–Nishina effects as well as the anisotropic nature of the inverse Compton scattering, the dominating leptonic emission process, likely yield spectral and variability signatures in the γ-ray domain at or above the sensitivity of current or upcoming gamma ray instruments like GLAST-LAT. In addition to all relevant radiative losses, we include propagation (such as convection in the stellar wind) as well as photon absorption effects, which a priori can not be neglected. The calculations are applied to WR 140 and WR 147, and predictions for their detectability in the γ-ray regime are provided. Physically similar specimen of their kind like WR 146, WR 137, WR 138, WR 112 and WR 125 may be regarded as candidate sources at GeV energies for near-future γ-ray experiments. Finally, we discuss several aspects relevant for eventually identifying this source class as a γ-ray emitting population. Thereby we utilize our findings on the expected radiative behavior of typical colliding wind binaries in the γ-ray regime as well as its expected spatial distribution on the γ-ray sky.  相似文献   

9.
The multiband nonthermal emissions in radio,X-ray,and very high-energy (VHE)γ-ray bands from two distant blazars,H 2356-309 and 1ES 1218+304,have been detected,and,especially from recent observations with the Suzaku,MAGIC and VERITAS telescopes,clearly reveal nonthermal power-law spectra. We study the broadband nonthermal spectra of the two sources by using a combination of a onezone homogeneous synchrotron self-Compton (SSC) model and an inhomogeneous conical jet model,where the new external background light (EBL) model is taken into account. The results show that (1) the nonthermal emissions of the two blazars,ranging from X-rays to VHE γ-rays,are from the homogeneous zone whereas the emissions in the radio bands can be explained as the radiation from the inhomogeneous conical jet; (2) a strict lower-limit EBL model can be used to explain their observed spectra well.  相似文献   

10.
11.
Measuring distances to galaxies, determining their chemical composition, investigating the nature of their stellar populations and the absorbing properties of their interstellar medium are fundamental activities in modern extragalactic astronomy helping to understand the evolution of galaxies and the expanding universe. The optically brightest stars in the universe, blue supergiants of spectral A and B, are unique tools for these purposes. With absolute visual magnitudes up to MV ≃ ‐9.5 they are ideal to obtain accurate quantitative information about galaxies through the powerful modern methods of quantitative stellar spectroscopy. The spectral analysis of individual blue supergiant targets provides invaluable information about chemical abundances and abundance gradients, which is more comprehensive than the one obtained from HII regions, as it includes additional atomic species, and which is also more accurate, since it avoids the systematic uncertainties inherent in the strong line studies usually applied to the HII regions of spiral galaxies beyond the Local Group. Simultaneously, the spectral analysis yields stellar parameters and interstellar extinction for each individual supergiant target, which provides an alternative very accurate way to determine extragalactic distances through a newly developed method, called the Flux‐weighted Gravity–Luminosity Relationship (FGLR). With the present generation of 10 m‐class telescopes these spectroscopic studies can reach out to distances of 10 Mpc. The new generation of 30 m‐class telescopes will allow to extend this work out to 30 Mpc, a substantial volume of the local universe (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We study core-dominance parameter R and polarization for blazars detected by Fermi LAT. Our results are as follows. (i) The blazars detected by Fermi LAT have higher average R and polarizations than those not detected by Fermi LAT. (ii) Compared with BL Lacs, flat-spectrum radio quasars (FSRQs) have lower average R and the ratio of beamed luminosity to the unbeamed luminosity f. (iii) In the diagram of polarization-Doppler factor relations, FSRQs may have p=α+3 and BL Lacs for p=α+2. These results suggest that the high optical polarization is correlated to the beaming effect. High polarization and core-dominance parameters are significantly more common among the LAT sources. The difference in polarization and core-dominance parameters between FSRQs and BL Lacs are due to the difference in their beaming effects and jet model.  相似文献   

13.
Loeb and Waxman have argued that high energy neutrinos from the decay of pions produced in interactions of cosmic rays with interstellar gas in starburst galaxies would be produced with a large enough flux to be observable. Their model is reexamined here and we obtain an upper limit to the diffuse neutrino flux from starburst galaxies. The upper limit obtained here is a factor of 5 lower than the flux which they predict. Our predicted neutrino flux would be below the atmospheric neutrino foreground flux at energies below 300 TeV and therefore would be unobservable. Compared with predicted fluxes from other extragalactic high energy neutrino sources, starburst neutrinos with PeV energies would have a flux considerably below that predicted for AGN models.

We also estimate an upper limit for the diffuse GeV γ-ray flux from starbust galaxies to be of the observed γ-ray background, much less than the component from unresolved blazars and more than an order of magnitude below the estimate of Thompson et al.  相似文献   


14.
With the recent advances made by Cherenkov telescopes such as H.E.S.S. the field of very high-energy (VHE) γ-ray astronomy has recently entered a new era in which for the first time populations of Galactic sources such as e.g. Pulsar wind nebulae (PWNe) or Supernova remnants (SNRs) can be studied. However, while some of the new sources can be associated by positional coincidence as well as by consistent multi-wavelength data to a known counterpart at other wavelengths, most of the sources remain not finally identified. In the following, the population of Galactic H.E.S.S. sources will be used to demonstrate the status of the identifications, to classify them into categories according to this status and to point out outstanding problems.  相似文献   

15.
Having analyzed high-resolution observations of extragalactic compact radio sources with modern systems of radio telescopes, we obtained an estimate of the upper limit for the photon electric charge, eγ ? 3×10?33 of the elementary charge (assuming the photon charge to be energy independent). This is three orders of magnitude better than the limit obtained from radio pulsar timing. We also set a limit on the charge of a gamma-ray (energy ~0.1 MeV) photon. In the future, the estimate based on extragalactic sources can be improved significantly.  相似文献   

16.
The Fermi γ-ray space telescope reported the observation of several Galactic supernova remnants recently, with the γ-ray spectra well described by hadronic pp collisions. The possible neutrino emissions from these Fermi detected supernova remnants are discussed in this work, assuming the hadronic origin of the γ-ray emission. The muon event rates induced by the neutrinos from these supernova remnants on typical km3 neutrino telescopes, such as the IceCube and the KM3NeT, are calculated. The results show that for most of these supernova remnants the neutrino signals are too weak to be detected by the on-going or up-coming neutrino experiment. Only for the TeV bright sources RX J1713.7-3946 and possibly W28 the neutrino signals can be comparable with the atmospheric background in the TeV region, if the protons can be accelerated to very high energies. The northern hemisphere based neutrino telescope might detect the neutrinos from these two sources.  相似文献   

17.
We present a calculation of the blazar contribution to the extragalactic diffuse γ -ray background (EGRB) in the EGRET energy range. Our model is based on inverse-Compton scattering as the dominant γ -ray production process in the jets of flat spectrum radio quasars (FSRQs) and BL Lac objects, and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff–Riley radio galaxies (FR galaxies).
The observed log  N –log  S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary behaviour of blazars, we find that unresolved AGN underproduce the intensity of the extragalactic background radiation. With our model only 20–40 per cent of the extragalactic background emission can be explained by unresolved blazars if we integrate to a maximum redshift of Z max=3. For Z max=5, blazars could account for 40–80 per cent of the EGRB. Roughly 70–90 per cent of the AGN contribution to the EGRB would result from BL Lacs. While the systematic uncertainties in our estimate for the FSRQ contribution appear small, in the case of BL Lacs our model parameters are not consistent with the results from studies in other wavelength regimes, and therefore may have larger systematic uncertainties. Thus we end up with two possibilities, depending on whether we underpredict or overpredict the BL Lac contribution: either unresolved AGN cannot account for the entire EGRB, or unresolved BL Lacs produce the observed background.
We predict a significant flattening of the γ -ray log  N –log  S function in the next two decades of flux below the EGRET threshold.  相似文献   

18.
We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determinations of local luminosity functions are presented and compared with earlier estimates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-milli-Jansky (mJy) levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distributions of star-forming galaxies, match the radio source counts at flux-density levels of tens of μJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of γ-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large-scale structure through studies of clustering and the Integrated Sachs–Wolfe effect. Finally, we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in Supplementary Material.  相似文献   

19.
The extragalactic analogs of the microquasars, the quasars, are strong γ-ray emitters at GeV energies. It is expected that microquasars are also γ-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy γ-ray sources.  相似文献   

20.
The technique of γ-ray astronomy at very high energies (VHE:>?100 GeV) with ground-based imaging atmospheric Cherenkov telescopes is described, the H.E.S.S. array in Namibia serving as example. Mainly a discussion of the physical principles of the atmospheric Cherenkov technique is given, emphasizing its rapid development during the last decade. The present status is illustrated by two examples: the spectral and morphological characterization in VHE γ-rays of a shell-type supernova remnant together with its theoretical interpretation, and the results of a survey of the Galactic Plane that shows a large variety of non-thermal sources. The final part is devoted to an overview of the ongoing and future instrumental developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号