首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1614–1624 lava flow of Mt. Etna was formed during a long-duration flank eruption involving predominantly pahoehoe flows which produced unusual surface features including mega-tumuli (here defined) and terraces. Detailed mapping of the flow units, surface features, and associated tubes reveals a complex sequence of emplacement for the field. The stair-stepped terraces appear to have been formed as a consequence of self-damming of tube-fed flows which developed «perched» ponds of lava. Surges of lava through tubes elevated sections of crusted lava at the distal ends of the flow to generate tumuli, some as high as 130 m, as a consequence of pressure via «hydrostatic head» conditions within the tube. Although pahoehoe lavas and the related features described here are atypical of Mt. Etna, they may reflect styles of eruption and lava emplacement found on volcanoes elsewhere.  相似文献   

2.
Mt. Nyiragongo is one of the most dangerous volcanoes in the world for the risk associated with the propagation of lava flows. In 2002 several vents opened along a huge system of fractures, pouring out lava which reached and destroyed a considerable part of Goma, a town of about 500,000 inhabitants on the shore of Lake Kivu. In a companion paper (Favalli et al. in Bull Volcanol, this issue, 2008) we employed numerical simulations of probable lava flow paths to evaluate the lava flow hazard on the flanks of the volcano, including the neighbouring towns of Goma (DRC) and Gisenyi (Rwanda). In this paper we use numerical simulations to investigate the possibility of significantly reducing the lava flow hazard in the city through the construction of protective barriers. These barriers are added to the DEM of the area as additional morphological elements, and their effect is evaluated by repeating numerical simulations with and without the presence of barriers. A parametric study on barrier location, size, shape and orientation led to the identification of barriers which maximize protection while minimizing their impact. This study shows that the highest hazard area corresponding to eastern Goma, which was largely destroyed by lava flows in 2002, cannot be effectively protected from future lava flows towards Lake Kivu and should be abandoned. On the contrary, the rest of the town can be sheltered from lava flows by means of two barriers that deviate or contain the lava within the East Goma sector. A proposal for the future development of the town is formulated, whereby “new” Goma is completely safe from the arrival of lava flows originating from vents outside its boundaries. The proposal minimizes the risk of further destruction in town due to future lava flows.  相似文献   

3.
During long-lived basaltic eruptions, overflows from lava channels and breaching of channel levées are important processes in the development of extensive 'a'ā lava flow-fields. Short-lived breaches result in inundation of areas adjacent to the main channel. However, if a breach remains open, lava supply to the original flow front is significantly reduced, and flow-field widening is favoured over lengthening. The development of channel breaches and overflows can therefore exert strong control over the overall flow-field development, but the processes that determine their location and frequency are currently poorly understood. During the final month of the 2008–2009 eruption of Mt. Etna, Sicily, a remote time-lapse camera was deployed to monitor events in a proximal region of a small ephemeral lava flow. For over a period of ~10 h, the flow underwent changes in surface elevation and velocity, repeated overflows of varying vigour and the construction of a channel roof (a required prelude to lava tube formation). Quantitative interpretation of the image sequence was facilitated by a 3D model of the scene constructed using structure-from-motion computer vision techniques. As surface activity waned during the roofing process, overflow sites retreated up the flow towards the vent, and eventually, a new flow was initiated. Our observations and measurements indicate that flow surface stagnation and flow inflation propagated up-flow at an effective rate of ~6 m h−1, and that these processes, rather than effusion rate variations, were ultimately responsible for the most vigorous overflow events. We discuss evidence for similar controls during levée breaching and channel switching events on much larger flows on Etna, such as during the 2001 eruption.  相似文献   

4.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

5.
6.
The 26 October 2002–28 January 2003 eruption of Mt. Etna volcano was characterised by lava effusion and by an uncommon explosivity along a 1 km-long-eruptive fissure on the southern, upper flank of the volcano. The intense activity promoted rapid growth of cinder cones and several effusive vents. Analysis of thermal images, recorded throughout the eruption, allowed investigation of the distribution of vents along the eruptive fissure, and of the nature of explosive activity. The spatial and temporal distribution of active vents revealed phases of dike intrusion, expansion, geometric stabilization and drainage. These phases were characterised by different styles of explosive activity, with a gradual transition from fire fountaining through transitional phases to mild strombolian activity, and ending with non-explosive lava effusion. Here we interpret the mechanisms of the dike emplacement and the eruptive dynamics, according to changes in the eruptive style, vent morphology and apparent temperature variations at vents, detected through thermal imaging. This is the first time that dike emplacement and eruptive activity have been tracked using a handheld thermal camera and we believe that its use was crucial to gain a detailed understanding of the eruptive event.  相似文献   

7.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

8.
Unique volcanic structures, known in the literature as “lava trees” and “tree molds”, have formed at several sites on Mt. Etna volcano (northeastern Sicily, Italy). They form when a fluid lava flow runs over a tree, wraps around it and, while the wood burns off, solidifies forming a hollow cast of the tree. The inhabitants of the Etna area call these formations “pietre cannone” (“cannon stones”) because of their cylindrical shape. The first documentation of lava trees is from Hawaii, but the first eye-witnessed accounts of their formation are, to our knowledge, from Etna’s 1865 eruption. Although many of the literature examples of lava trees and tree molds formed in pahoehoe, many of those reported in this work formed in a’a. The sites where we have found the lava tree molds are located within the territory of the Etna Regional Park; most occur next to walking trails and have a high potential for geotourism.  相似文献   

9.
Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the E–W-trending Pernicana Fault System (PFS). During the 2002–2003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (1–1.9 cm/year), only slightly lower than those calculated for the western portion (1.4–2.3 cm/year). After an initial rapid motion during the first days of the 2002–2003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNW–SSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume >1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.Editorial responsibility: R. Cioni  相似文献   

10.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

11.
The July–August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3,050 and 2,100 m altitude, and two on the NE flank between 3,080 and 2,600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically, the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore, one of the eccentric vents, at 2,570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, during both the initial and closing stages of the eruption. For 6 days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25×10 6 m 3 of lava and 5–10×10 6 m 3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14–16 m 3 s -1, while the average effusion rate at all fissures was about 11 m 3 s -1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid seventeenth century.  相似文献   

12.
A systematic petrographic and chemical study of chronologically ordered lava samples collected during the 1983 Etna eruption, has shown minor fluctuating variations in crystallinity and chemistry, apparently correlated with variations in the rate of effusion. Comparison with the compositional variations observed in the lavas emitted during the 1971–1983 period, has revealed a repeated evolutional tendency suggesting a small size shallow storage system periodically refilled, as in 1983, by more primitive magma.  相似文献   

13.
On the basis of investigations carried out since 1966 at Mount Etna, the temperatures of erupting magmas are shown to be determined within a few °C in the range 1000–1200°C, by using suitable techniques and apparatus. The best measurements are obtained from sheathed thermocouples that are briefly described. Particularly, a new continuously recording multithermocouple system has been designed, tested satisfactorily, and compared with the performances of other pyrometers. However, a certain standardization of measurements is necessary to obtain and discuss the results: measurements should be made at lava vents or a few meters away and at least 30–50 cm into the flows, the highest values only being considered as significant.The magmatic temperatures and petrological characters appear closely related to the volcanic activity. In the normal state of moderate persistent activity of Mount Etna, the alkaline basic magma extrudes at a nearly constant temperature of 1080°C (corresponding to about 50% crystalline phases), meanwhile during stronger paroxysmal eruptions the magma temperature is higher (1125°C and possibly more) with a lower observed content of phenocrysts.  相似文献   

14.
Contemporaneous Plinian eruptions of rhyolite pumice from Glass Mountain and Little Glass Mountain during the last 1100 years B.P. were followed by extrusion of lava flows. 1.2 km of material was erupted and 10% by volume is tephra. All of the tephra deposits consist of very poorly sorted coarse ash and lapilli that are mostly pumice pyroclasts.Eruptive sequences, chemical composition and petrographic character of the rhyolites at Little Glass Mountain and Glass Mountain suggest that they came from the same magma body. The 1:9 ratio of tephra to lavas is typical of small silicic magma chambers. Eruption from a small chamber, 4–6 km deep, at vents 15 km apart is possible if magma rose along cone sheets with dips of 45–60°. The caldera rim and arcuate lines of vents near it may represent the surface expression of several concentric cone sheets.Pumice pyroclasts erupted at Glass Mountain and Little Glass Mountain may have formed in the following manner: (1) vesicle growth and coalescence beginning at 1–2 km depths; (2) elongation of the vesicles by flow within the cone sheets; (3) disruption of the vesiculated magma when it reached the surface by an expansion wave passing down through it; and (4) eruption of comminution products as pumice pyroclasts. Plinian activity at Little Glass Mountain and Glass Mountain continued until the volatile-rich top of the magma chamber had been depleted.  相似文献   

15.
Mount Cameroon (4,095 m high and with a volume of ~1,200 km3) is one of the most active volcanoes in Africa, having erupted seven times in the last 100 years. This stratovolcano of basanite and hawaiite lavas has an elliptical shape, with over a hundred cones around its flanks and summit region aligned parallel to its NE--SW-trending long axis. The 1999 (28 March–22 April) eruption was restricted to two sites: ~2,650 m (site 1) and ~1,500 m (site 2). Similarly, in the eruption in 2000 (28 May–19 June), activity occurred at two sites: ~4,095 m (site 1) and ~3,300 m (site 2). During both eruptions, the higher vents were more explosive, with strombolian activity, while the lower vents were more effusive. Accordingly, most of the lava (~8×107 m3 in 1999 and ~6×106 m3 in 2000) was emitted from the lower sites. The 1999–2000 lavas are predominantly basanites with low Ni (5–79 ppm), Cr (40–161 ppm) and mg numbers (34–40). Olivine (Fo77–85, phenocrysts and Fo68–72, microlites), clinopyroxene (Wo47En41Fs10 to Wo51En34Fs15), plagioclase (An49–67) and titanomagnetite are the principal phenocryst and groundmass phases. The lavas contain xenocrysts of olivine and clinopyroxene, which are interpreted as fragments of intrusive rocks disrupted by magma ascent. Major and trace element characteristics point to early fractionation of olivine. The clinopyroxenes (Al2O3 1.36–7.83 wt%) have high Aliv/Alvi ratios (1.3–1.8) and are rich in TiO2, characteristics typical of low pressure clinopyroxenes. Geochemical differences between the 1999–2000 lavas and those from previous eruptions, such as higher Nb/Zr of the former, suggest that different eruptions discharged magmas that evolved differently in space and time. Geophysical and petrological data indicate that these fractionated magmas originated just below the geophysical Moho (at 20–22 km) in the lithospheric mantle. During ascent, the magmas disrupted intrusions and earlier magma pockets. The main ascent path is below the summit, where newly arrived magma degasses. Degassed magma simultaneously intrudes the flank rift zones where most lava is extruded.An erratum to this article can be found at  相似文献   

16.
Analysis of sustained long-period activity at Etna Volcano, Italy   总被引:1,自引:0,他引:1  
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.  相似文献   

17.
Lava flux and a low palaeoslope were the critical factors in determining the development of different facies in the Late Permian Blow Hole flow, which comprises a series of shoshonitic basalt lavas and associated volcaniclastic detritus in the southern Sydney Basin of eastern Australia. The unit consists of a lower lobe and sheet facies, a middle tube and breccia facies, and an upper columnar-jointed facies. Close similarities in petrography and geochemistry between the basalt lavas from the three facies suggest similar viscosities at similar temperatures. Sedimentological and palaeontological evidence from the sedimentary units immediately below the Blow Hole flow suggests that the lower part of the volcanic unit was emplaced in a cold water, shallow submarine environment, but at least the top of the uppermost lava was subaerial with some palaeosol development. The lower lobe and sheet facies was emplaced on a low slope (<2°) in a lower to middle shoreface environment with water depths of 20–25 m. Lava may have transgressed from subaerial to subaqueous and was emplaced relatively passively with lava flux sufficiently high and uniform to form lobes and sheets rather than pillows. The middle unit probably originated from a subaerial vent and flowed into a shallow (10–15 m) submarine environment, and wave action probably interacted with the advancing lava front to form a lava delta. Lava flux was sufficiently high to produce well-developed, subcircular lava tubes, which lack evidence for thermal erosion. In some areas, lava ‘burrowed’ into the unconsolidated, water-saturated lava delta and sand pile to produce intrusive contacts. The upper columnar-jointed unit represents a ponded facies probably emplaced initially in water depths <5 m but whose top was subaerial.  相似文献   

18.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

19.
The event chronology of the 1983 Etna eruption is summarized, and the development of a compound lava field at different time intervals during the eruption is described as observed from aerial photographs.The morphological evolution of the lava fronts has been compared with effusion rate and principal modifications occurring in the main channel, and it has been inferred that the development of the lava flow units is related to the formation of lava tunnels and particularly of lava channels. The total volume of lava emitted has been estimated to be 100±20×106 m3 according to two different methods. Finally, the comparison with previous historical eruptive activity shows a good correlation to other quiet eruptions.  相似文献   

20.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号