首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the source for numerous magma superflows (MSFs) with complex structures, whose traces have been identified in the Bering Sea (Melekestsev and Slezin, 2017), was regional mantle plume-like formations (or plumes). The magmatic material propagated from these for some hundreds of kilometers or farther along interfaces at different depths between crustal layers during n × 105 to n × 106 years. The long-continued generation and multi-portion structure of the MSFs is explained by slow pulsations in the rising jet of primary melt in the form of a beaded (“peristalsis-like”) structure of successive bulges (which we shall refer to as “magmons”), which float up as “asthenoliths” as the through flow in the channel becomes lower. The most extensive and longest MSFs were formed at the end of the Eocene through Oligocene, while the youngest and shortest flow was generated in the Pleistocene.  相似文献   

2.
Representation of dust sources remains a key challenge in quantifying the dust cycle and its environmental and climatic impacts. Direct measurements of dust fluxes from different landform types are useful in understanding the nature of dust emission and characterizing the dynamics of soil erodibility. In this study we used the PI-SWERL® instrument over a seasonal cycle to quantify the potential for PM10 (particles with diameter ≤10 μm) emission from several typical landform types across the Tengger Desert and Mu Us Sandy Land, northern China. Our results indicate that sparse grasslands and coppice dunes showed relatively high emission potentials, with emitted fluxes ranging from 10−1 to 101 mg m−2 s−1. These values were up to five times those emitted from sand dunes, and one to two orders of magnitude greater than the emissions from dry lake beds, stone pavements and dense grasslands. Generally, PM10 emission fluxes were seen to peak in the spring months, with significant reductions in summer and autumn (by up to 95%), and in winter (by up to 98%). Variations in soil moisture were likely a primary controlling factor responsible for this seasonality in PM10 emission. Our data provide a relative quantification of differences in dust emission potential from several key landform types. Such data allow for the evaluation of current dust source schemes proposed by prior researchers. Moreover, our data will allow improvements in properly characterizing the erodibility of dust source regions and hence refine the parameterization of dust emission in climate models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Detecting organic tracers from biomass burning in the atmosphere.   总被引:1,自引:0,他引:1  
This is a brief review key to the literature on the determination of organic tracers from biomass burning which are detectable even after long-range global transport in total extracts of atmospheric particles. The major tracers are thermal degradation products from the biopolymer cellulose, namely the didehydromonosaccharide derivatives levoglucosan, galactosan and mannosan and the resin acid derivative dehydroabietic acid, with minor beta-sitosterol. Dehydroabietic acid is emitted primarily from burning of conifer fuel and these tracers are found in most aerosol samples from the North American continent. Particulate matter from the atmosphere over oceanic areas contains organic tracers from both natural and biomass burning emissions. The major biomarker compounds characterized are natural products from continental vegetation consisting primarily of epicuticular wax components and trace components from biomass burning emissions. The presence of these tracers in atmospheric particulate matter over the ocean confirms the long-range transport of smoke from biomass burning off the continents.  相似文献   

4.
Two Dungeness crab trap tags and floats lost off the State of Oregon, USA during the 2006-2007 fishing season were recovered 4years later in the Northwestern Hawaiian Islands (NWHI): on Lisianski Island on July 15, 2010; and on Kure Atoll on December 10, 2010. This is the first documented recovery of marine debris from Oregon fisheries in the NWHI. We simulate the oceanic drift tracks of the derelict fishing gear with the Ocean Surface Current Simulator (OSCURS) model using estimated loss dates in Oregon based on interviews with the crab trap owners and known recovery sites and dates in the NWHI. These data confirm the US Pacific Northwest as a source of marine debris deposited in the NWHI and provide enhanced understanding of the oceanic drift pathways of marine debris in the North Pacific Ocean.  相似文献   

5.
Current velocity and hydrographic profiles obtained for the first time in a Chilean glacial fjord were combined with under-way surface temperature and salinity measurements to describe the formation of tidal intrusion fronts and plume-like fronts. These fronts formed within several hundred meters from each other in the vicinity of a shallow sill, maximum depth of approximately 3 m, in a glacial fjord off the Strait of Magellan in the Chilean Patagonia. Measurements were obtained in mid-December of 2003 and 2004, during late austral spring, under active glacier melting and calving. The glacial fjord is approximately 18 km long from the face of the glacier to the connection with the Strait of Magellan and typically less than 1 km wide throughout the system. Between the glacier face and the 3-m sill, depths are typically less than 100 m, and seaward of the sill, depths increase to more than 200 m. Velocity and salinity data obtained during flood periods revealed that water with oceanic salinity was aspirated to near-surface levels from depths of approximately 30 m as flood flows accelerated from approximately 10 cm s−1, seaward of the sill, to approximately 60 cm s−1 at the sill crest. The upwelled water was then slightly diluted by mixing at the sill crest before plunging down to the basin between the glacier and the sill. The plunging of salty water over the sill created dramatic tidal intrusion fronts only a few tens of meters from the sill crest and pumping of salt with every flood period. During ebb periods, the low salinity waters derived from the glacier and a small river near the glacier converged at the sill crest. After some mixing, the buoyant waters were released within a thin layer (∼3 m deep) lead by a plume-like front that remained coherent for a few hundred meters seaward of the sill. The main findings of this study were that tidal intrusion and plume fronts were observed within 2 km from each other, and that tidal pumping was the predominant mechanism for salt fluxes into the system.  相似文献   

6.
PM2.5 is the key pollutant in atmospheric pollution in China.With new national air quality standards taking effect,PM2.5 has become a major issue for future pollution control.To effectively prevent and control PM2.5,its emission sources must be precisely and thoroughly understood.However,there are few publications reporting comprehensive and systematic results of PM2.5 source apportionment in the country.Based on PM2.5 sampling during 2009 in Shenzhen and follow-up investigation,positive matrix factorization(PMF)analysis has been carried out to understand the major sources and their temporal and spatial variations.The results show that in urban Shenzhen(University Town site),annual mean PM2.5 concentration was 42.2μg m?3,with secondary sulfate,vehicular emission,biomass burning and secondary nitrate as major sources;these contributed30.0%,26.9%,9.8%and 9.3%to total PM2.5,respectively.Other sources included high chloride,heavy oil combustion,sea salt,dust and the metallurgical industry,with contributions between 2%–4%.Spatiotemporal variations of various sources show that vehicular emission was mainly a local source,whereas secondary sulfate and biomass burning were mostly regional.Secondary nitrate had both local and regional sources.Identification of secondary organic aerosol(SOA)has always been difficult in aerosol source apportionment.In this study,the PMF model and organic carbon/elemental carbon(OC/EC)ratio method were combined to estimate SOA in PM2.5.The results show that in urban Shenzhen,annual SOA mass concentration was 7.5μg m?3,accounting for 57%of total organic matter,with precursors emitted from vehicles as the major source.This work can serve as a case study for further in-depth research on PM2.5 pollution and source apportionment in China.  相似文献   

7.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Debris flows are fast-moving gravity flows of poorly sorted rock and soil, mixed and saturated with water. Debris-flow initiation has been studied using empirical and experimental modelling, but the geomorphic changes, indicative of different triggering processes, are difficult to constrain with field observations only. We identify signatures to distinguish two different debris-flow release styles by integrating high-resolution multi-temporal remote sensing datasets and morphometric analysis. We analyse debris flows sourced above the town of Ísafjörður (Iceland). Two debris-flow triggering processes were previously hypothesised for this site: (i) slope failure, characterised by landslides evolving into debris flows; and (ii) the fire-hose effect, in which debris accumulated in pre-existing, steep-sided bedrock passages is transported by a surge of water. It is unknown which process dominates and determines the local risk. To investigate this question, we compare airborne LiDAR elevation models and aerial photographs collected in 2007 with similar data from 2013. We find that two new debris-flow tracks were created by slope failures. These are characterised by steep sliding surfaces and lateral leveed channels. Slope failure also occurred in two large, recently active tracks, creating the preparatory conditions for the fire-hose effect to mobilise existing debris. These tracks show alternating zones of fill and scour along their length, and debris stored below the source-area at rest angles >35°. Our approach allows us to identify and quantify the morphological changes produced by slope failure release process, which generated the preparatory conditions for the fire-hose effect. As debris flows are rarely observed in action and morphological changes induced by them are difficult to detect and monitor, the same approach could be applied to other landscapes to understand debris-flow initiation in the absence of other monitoring information, and can improve the identification of zones at risk in inhabited areas near hillslopes with potential for debris flows. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
Structural safety for earthquake waves emitted from a nearby fault is a major concern. For a large complex structure, it might be desired to estimate its seismic response by analyzing a fault–structure system: a full three‐dimensional model in which a source fault and a target structure are modeled so that fault processes, wave propagation and amplification processes, and resulting dynamic responses of the structure can be computed numerically. To analyze this fault–structure system, this paper proposes an efficient approach based on multiscale analysis, i.e. waves emitted from the source fault are computed in the entire system in the geological length‐scale; then they are refined in a small part of the system that includes the structure, and the seismic response of the structure is accurately computed in the engineering length‐scale. Using a long highway tunnel as an example, this paper examines the validity of the proposed approach. The usefulness and applicability of the proposed approach to estimate the structural seismic responses are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Troll B crude oil was weathered under Arctic conditions with different ice coverage: open water, 50% ice and 90% ice. Samples (100 mL) were taken during the experiment and tested for ignitability in a burning cell. From each burning a residue sample was taken for analysis. The burning process removed the light compounds eluting before C13. No effect from the prior weathering time or the different ice coverage was seen in the burn residue composition. The content of selected Poly Aromatic Hydrocarbons (PAHs) was determined and it was noted that the concentration of PAHs with more than 4 rings were increased. The source origin of the PAHs was investigated by use of relative ratios of PAH isomers and indicated that some formation of PAHs was additionally taking place during burning.  相似文献   

11.
A joint United States/Russian/French collaborative experiment was undertaken in March 1993 and March 1996. Projects LODE I and II (Lake Owens Dust Experiments) took place on the anthropogenically desertified playa (dry lakebed) and surrounding regions of Owens Lake, in east-central California. One of the five parts of Project LODE was to determine relationships between optical depth and flux of dust emitted from the dry lake. Project LODE II included subsequent dust plume measurements and size distributions obtained through April 1996, to further refine the flux measurements for distinct mineral aerosol source regions at Owens Lake. Size distributions of dust aerosol were determined and aerosol optical depths were calculated from sunphotometer solar extinction measurements taken downwind in plumes coming from the emissive areas of Owens Lake. This source was visually observed for 10 measured dust storms. The plume mass was calculated to be 1·5 × 109 g using ground-based measurements and ≥1·6 × 109 g from satellite data. Project LODE II results were found to be consistent with LODE I results for the south end of the playa, but flux values were found to be reduced for the northeastern portion of the playa by comparison. Vertical flux values estimated by sunphotometry were found to be consistent with values estimated via a micrometeorological method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A thermal event reduces the number of previously registered fission tracks in a mineral dependent upon the track retention properties of the individual mineral. Apatite, sphene and zircon have retention properties over a wide range of temperatures (from 100° to 550°C); apatite data reveal information at lowest temperatures while sphene and zircon data are useful for higher temperatures.Thermal events within this temperature range of 100°C to about 550°C are suitable for study with this technique. The age of the event is determined from samples in which the fission tracks are completely erased, while minerals containing partially removed (erased) tracks provide information on the temperatures occurring during the thermal event.As a test case, the analysis of the temperatures developed by the meteorite impact which produced the Ries crater at 14.7 m.y. ago is presented.  相似文献   

13.
In this study, a modification to the chemical mass balance (CMB) receptor model presented in an earlier work was expanded to account for the changes in volatile organic compound (VOC) source fingerprints due to atmospheric reactions of VOCs that take place after being emitted to the atmosphere. The photochemical reactions consume VOCs that participate in, causing changes in the source fingerprints. These changes are of considerable magnitude when the travel durations from the source to the receptor (measurement point) are considered. The current study focuses on expansion of the integrated reaction rates of VOCs with ambient reactive species such as OH ? , O3, NO3, and O ? in order to estimate the source emission profiles simultaneously at the receptor site. Two test cases with different travel times and with different ambient OH ? , O3, and NO3 concentrations were also provided to compare the standard model, the modified model suggested in the previous work, and the current modification. F‐tests were also performed to determine whether the changes in source compositions are significant or not. The results from both the standard model and the modified model were evaluated in terms of χ2, R2, percent mass apportioned (MA), and a best fit (BF) measure. Maximum values of BF for the test cases from the three models were 0.70 ± 0.03, 0.74 ± 0.05, and 1.000 ± 0.00, respectively, indicating that the current modification increases the performance of two previous models and was better in explaining the effects of chemical reactions of VOCs.  相似文献   

14.
Fred Worrall  Simon Dixon 《水文研究》2013,27(26):3994-4003
Given the continuing concern about rising concentrations of dissolved organic carbon (DOC) in stream water leaving peat‐covered catchments, this study has considered the impact of managed burning or cutting of Calluna vulgaris, a dominant vegetation cover in many UK peatlands. Pristine mature Calluna stands were compared with those that had been subject to cutting and or managed burning up to 5 years after intervention. The study measured the DOC concentration of both soil and surface runoff water over a period of 12 months in comparison with water table depth, conductivity, and pH. The results show the following:

15.
Although the Arctic methane reservoir is large,the emission of methane from the Arctic Ocean into the atmosphere remains poorly constrained.Continuous ship-borne measurements of atmospheric methane near the surface ocean were carried out during two cruises to investigate methane emission from the Arctic Ocean up to the latitude of 87°N.Three-day air mass back trajectories along the cruise tracks indicated that the surface Arctic Ocean could be a potentially important source of methane to the atmosphere.Rapid bursts in methane concentration occurred mainly along the ocean frontal area,suggesting that frontal upwelling in the upper layer of the Arctic Ocean might contribute to methane emissions into the atmosphere.  相似文献   

16.
We have developed a technique for revealing nuclear tracks in the mineral hibonite (CaAl12O19), found in the refractory inclusions from carbonaceous chondrites. The tracks in hibonitesfrom Murchison carbonaous chondrite are dominated by fission tracks from244Pu (constituting more than 90% of the total). The measured uranium contents in these crystals range from 1.2 to 62 ppb. We deduce that the average value for the244Pu/238U ratio in most of the Murchison hibonites at the time of track retention is0.022 ± 0.011.  相似文献   

17.
The intensity of the atmospheric muon flux depends on many factors: the energy spectrum of primary cosmic rays and the state of the Earth’s heliosphere, magnetosphere, and atmosphere. The wide-aperture URAGAN muon hodoscope (Moscow, Russia, 55.7° N, 37.7° E, 173 m a.s.l.) makes it possible to investigate not only variations in the muon flux intensity but also temporal changes in the parameters of its angular distribution. These changes are analyzed using the vector of local anisotropy and its projections, which have different sensitivities to the parameters of modulation of both primary cosmic rays in the heliosphere and the Earth’s magnetosphere and secondary cosmic rays as they pass through the Earth’s atmosphere. The vector of local anisotropy is the sum of unit vectors (directions of the reconstructed muon tracks) normalized to the number of tracks. The results of an analysis of long-term variations in mean hourly projections of the vector of local anisotropy obtained from the 2007–2011 URAGAN hodoscope data are presented.  相似文献   

18.
The present part of the publication (Part II) deals with long range dispersion of radionuclides emitted into the atmosphere during the Fukushima Dai-ichi accident that occurred after the March 11, 2011 tsunami. The first part (Part I) is dedicated to the accident features relying on radionuclide detections performed by monitoring stations of the Comprehensive Nuclear Test Ban Treaty Organization network. In this study, the emissions of the three fission products Cs-137, I-131 and Xe-133 are investigated. Regarding Xe-133, the total release is estimated to be of the order of 6 × 1018 Bq emitted during the explosions of units 1, 2 and 3. The total source term estimated gives a fraction of core inventory of about 8 × 1018 Bq at the time of reactors shutdown. This result suggests that at least 80 % of the core inventory has been released into the atmosphere and indicates a broad meltdown of reactor cores. Total atmospheric releases of Cs-137 and I-131 aerosols are estimated to be 1016 and 1017 Bq, respectively. By neglecting gas/particulate conversion phenomena, the total release of I-131 (gas + aerosol) could be estimated to be 4 × 1017 Bq. Atmospheric transport simulations suggest that the main air emissions have occurred during the events of March 14, 2011 (UTC) and that no major release occurred after March 23. The radioactivity emitted into the atmosphere could represent 10 % of the Chernobyl accident releases for I-131 and Cs-137.  相似文献   

19.
Most land‐based forestry systems use extensive networks of unsealed tracks to access the timber resource. These tracks are normally drained by constructing cross‐banks, or water bars, across the tracks immediately following logging. Cross‐banks serve three functions in controlling sediment movement within forestry compartments:
  • 1. they define the specific catchment area of the snig track (also known as skid trails) so that the overland flow does not develop sufficient energy to cause gullies, and sheet and rill erosion is reduced;
  • 2. they induce some sediment deposition as flow velocity reduces at the cross‐bank;
  • 3. they redirect overland flow into the adjacent general harvesting area (GHA) so that further sediment deposition may take place.
This paper describes a simple model that predicts the third of these functions in which the rate of runoff from the track is combined with spatial attributes of the track and stream network. Predictions of the extent of the overland flow plumes and the volume of water delivered to streams is probabilistically presented for a range of rainfall‐event scenarios with rainfall intensity, time since logging and compartment layout as model inputs. Generic equations guiding the trade‐off between intercross‐bank length and flow path distance from cross‐bank outlet to the stream network needed for infiltration of track runoff are derived. Copyright © 2002 John Wiley & Sons, Ltd. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A large number of individual enstatite crystals of the gas-rich aubrites Khor Temiki, Staroe Pesyanoe and Bustee was analyzed for implanted helium and for steep gradient ion tracks in order to investigate the relation between solar flare irradiation and solar wind implantation with extreme local resolution. Irradiated and non-irradiated crystals coexist within the gas-rich phases of the aubrites investigated. Statistically in a given meteorite the proportion of crystals with implanted solar wind is similar to the proportion of solar flare irradiated crystals. It varies from aubrite to aubrite in the sequence of their bulk contents of trapped rare gases.For nine enstatites, tracks and rare gases were subsequently measured within the same crystal. The results support the intimate association of solar flare tracks and implanted He. The4He-surface concentrations of irradiated crystals vary between <5 × 10?7 and 10?4 cm3 STP/cm2.The absence of saturation effects together with the low degree of elemental gas fractionation indicates very short solar wind exposure times (< 100 yr) rather than strong diffusion losses. The evidence from tracks and rare gases can be understood in terms of an early simultaneous irradiation of aubritic crystals by solar wind and solar flare particles on top of a regolith-covered parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号