首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
钻遇莫霍面是人类一直以来的梦想。深海海底是地球上离莫霍面最近的地方,目前有研究推测南海是世界上莫霍面深度最浅的海域之一,但缺乏足够的直接证据。深反射地震探测可以直接揭示岩石圈的构造形态,是莫霍面探测的重要手段。本文基于长达15000 km的深反射多道地震剖面的解释、处理、制图和分析,结合前人的研究,形成了南海海盆区莫霍面反射特征和空间分布的初步认识。① 南海东部次海盆南部早期经历了较快速扩张,岩浆供应充足,受扩张停止后岩浆活动影响较小,基底平坦,地质构造相对简单,同时洋壳地震速度结构不存在异常,且有较强的广角莫霍面反射波和可识别的地幔顶部折射波,具备莫霍面钻探的基本条件。② 南海海盆不同区域的莫霍面反射强度存在较大差异。其中东部次海盆莫霍面反射最为强烈且清晰,西北次海盆次之,西南次海盆仅有零星出现的清晰莫霍面反射且可信度不高。③ 识别南海海盆区莫霍面地震反射长度超过3500 km,首次形成了海盆区深度域莫霍面地震反射空间分布图。与重力反演的莫霍面深度相比,利用深反射多道地震计算的莫霍面深度细节更为丰富,并且可以在垂向上清晰刻画莫霍面的结构。整体上,南海海盆区莫霍面地震反射强烈和可信度高的区域中,深度较浅的区域之一是东部次海盆南部,最浅处仅约9. 5 km,其中水深4. 01 km,洋壳厚度仅5. 54 km。综合判断,东部次海盆南部是南海重要的莫霍面钻探备选区,这对南海莫霍面钻探选址具有重要意义。  相似文献   

2.
利用最新多道地震剖面资料,结合重力、磁力、地形等地球物理资料,揭示了中沙地块南部断裂空间展布特征、断裂发育时期、断裂内部构造形变特征及深部地壳结构,并基于认识探讨了断裂的发育机制。研究结果认为,中沙地块南部陆缘构造属性为非火山型被动大陆边缘:地壳性质从西北向东南由减薄陆壳向洋陆过渡壳再向正常洋壳发育变化;Moho面埋深从中沙地块下方的26 km快速抬升到海盆的10~12 km;从中沙地块陡坡至其前缘海域的重力异常明显负异常区为洋陆过渡带,在重力由高值负异常上升到海盆的低值正、负异常的边界为洋陆边界。中沙地块南部发育有4组阶梯状向海倾的深大正断裂,主要发育时期为晚渐新世到中中新世。断裂早期发育与南海东部次海盆近NS向扩张有关,后期遭受挤压变形、与菲律宾海板块向南海的NWW向仰冲有关。该研究有助于更好认识南海海盆的扩张历史和南海被动大陆边缘的类型。  相似文献   

3.
西北次海盆的深部地壳结构蕴含着南海北部陆缘拉张过程的重要信息.广角反射/折射测线(OBS2006-2)长386 km,是目前唯一的一条沿NEE向穿过西沙地块、并平行于西北次海盆扩张脊的深地震测线.通过射线追踪与走时模拟方法(RAYINVR),获得了OBS2006-2测线下方的速度结构.结果表明:西沙地块的沉积层厚度约为1~2 km,而西北次海盆的沉积层厚度大约为2~3 km;Moho界面从西沙地块的27 km逐步抬升到西北次海盆的12 km,Moho界面下方的速度为7.8~8.0 km/s;未发现壳内高速层和低速层.在西沙地块和西北次海盆的过渡区,有着较大量的岩浆活动信息,推测与西北次海盆的初始扩张有关.OBS2006-2测线中114.5°E以西的地区为减薄的陆壳,而114.5°E以东的地区为洋壳,莫霍面在陆壳与洋壳的结合处剧烈抬升,地壳厚度明显减薄.西北次海盆的扩张脊下方可能有残余岩浆的存在.   相似文献   

4.
南海西北部重磁场及深部构造特征   总被引:9,自引:3,他引:9  
通过对南海重磁数据的重新处理,得到南海西北部自由空间重力异常图、布格重力异常图、磁异常图和化极磁异常图,并对所反映的地球物理场特征加以分析。根据重力场资料对研究区的地壳结构进行了反演计算,结果表明地壳厚度在10~38km之间,总的趋势由陆向洋逐渐减薄,对应于地壳类型从陆壳、过渡壳到洋壳的分布特征。根据磁力资料计算了居里面深度,其埋深变化于11~27km之间,在陆区居里面是下地壳顶界面和莫霍面之间的另一个物性界面,而在海区则接近于莫霍面埋深。  相似文献   

5.
南海重力异常特征及其显著的构造意义   总被引:1,自引:0,他引:1  
在南海地区地震测深数据有限的情况下,利用重力异常可以研究南海大范围的深部地壳结构及地质构造展布特征。基于空间重力异常,结合最新的地形、沉积物厚度及地震测深等数据,分别从地震约束的莫霍面反演和无约束的三维相关成像两个视角研究南海的地壳结构,利用壳幔界面起伏、地壳厚度及三维等效密度分布来探讨地壳结构的纵横向变化。同时,联合采用延拓、水平梯度及线性构造增强滤波方法聚焦重力异常中的区域线性特征,突出显示了反映地壳横向变化的深断裂、洋陆转换边界、海盆扩张轴等线性构造的展布。重力解释与贯穿南海南北的广州-巴拉望地学断面对比表明,重力异常反演及异常的区域线性特征,较好地揭示了南海海域大范围的地壳结构与区域构造展布。  相似文献   

6.
西南次海盆位于南海渐进式扩张的西南端,共轭陆缘结构和残留扩张脊保留完整,是研究南海深部结构和动力学机制的关键区域。前期研究发现,西南次海盆洋陆过渡带较窄、同扩张断层发育、地震反射莫霍面不清晰、具有慢速扩张等特征。然而,由于不同探测方法获取的地壳结构具有多解性,使得西南次海盆洋陆转换过程、慢速扩张洋壳结构与增生模式以及龙门海山岩石性质与地幔成因机制等基础科学问题尚存争议。为此我们建议在西南次海盆开展地质取样获取海山岩石样品,确定其年龄与性质,分析扩张后海山形成的深部动力过程;并对关键构造部署高精度的地震反射/折射联合探测,结合岩石物理分析,对西南次海盆进行构造成像和物质组成参数正反演,以实现壳幔尺度的地震学透视,为探索西南次海盆洋陆转换过程和洋壳增生模式提供重要的地球物理证据,以丰富和完善南海的动力学演化模式。  相似文献   

7.
已有钻井以及地震资料揭示南海南部海域广泛发育中生代地层。为了进一步了解南海南部中生代地层的分布特征及油气地质意义,本文利用最新的卫星重力数据反演中生界的深度和厚度。首先,采用重力场正演技术消除海水的影响,获得南海南部布格重力异常。其次,为了消除新生代沉积层的影响,将新生代沉积层划分为0~3、3~6、6~10 km 3层,并根据前人在南海获得的密度与深度的关系,采用变密度Parker正演方法计算新生代沉积层产生的重力影响,并将其从布格重力异常中减去,从而获得前新生代重力异常。在此基础上,采用小波多尺度分解技术,消除深部莫霍面以及局部岩体重力的影响,从而计算得到反映中生界的重力异常。最后采用三维Parker变密度界面快速反演技术获得南海南部中生界深度和厚度。反演结果与已知中生界钻井具有较好的对应。南海南部地区中生界主要分布在礼乐滩、巴拉望岛北部和万安地区,厚度分布小于9 km,其他大部分地区中生界厚度小于1 km或者不存在中生界。其中中生界在礼乐滩地区最为发育,其次在巴拉望岛北部也广泛发育。结合前人在该区域的油气地质条件研究成果,认为南海南部海域礼乐滩地区中生界具有较好的油气勘探前景。  相似文献   

8.
高速层成因的争议限制了对南海深部结构、构造演化以及南海完整演化历史的认识.运用Oasis Montaj软件对穿越南沙西南部的最新地震测线进行重震联合反演,分析莫霍面起伏、地壳厚度及高速层的分布,计算全壳伸展因子和现今高速层的温度、识别火山时代,并探讨高速层的成因.南薇西盆地和礼乐盆地区伸展因子为1.5~4.0,未达到蛇纹石发育条件;南沙海槽区伸展因子大,最大为11.2,海水可通过深大断裂下渗与橄榄岩反应生成蛇纹石,高速层处温度低于蛇纹石稳定温度;通过地震剖面确定火山在南海停止扩张之后形成.研究结果表明,南沙西南部高速层按成因分为两类,南薇西盆地和礼乐盆地区为南海扩张停止后火山喷发残余的岩浆,而南沙海槽盆地区为早期橄榄岩的蛇纹石化与南海停止扩张后岩浆的混合体.   相似文献   

9.
利用中国南海北部潮汕坳陷内首次获得的一条长250 km的重磁剖面数据,研究了潮汕坳陷地壳结构,定性分析了火山岩的分布及其属性。采用欧拉反褶积方法估算了重力场源的位置及其深度,划分出陆坡北缘及东沙两个断裂带。根据断裂带切割深度,认定这两个断裂带均为超壳断裂,且都有岩浆上涌。应用Parker-Oldenburg法反演计算了莫霍面深度。用滑动对数能谱分析和人机交互正反演方法计算出磁性基底深度。结果表明:潮汕坳陷莫霍面从西北方向测线起始点的25 km向东南方向抬升到终点的14 km,而磁性基底埋深从西北测线起始点的3.6 km向东南方向逐渐加深到测线终点的8.9 km。  相似文献   

10.
礼乐盆地位于南海南部的南沙地块,自中生代以来,经历了挤压、张裂、沉降和碰撞挤压等多期次构造过程,发育众多的碳酸盐台地,是一个很有勘探潜力的叠合盆地.根据位于礼乐盆地东北边缘的地震测线NH973-2,结合部分已发表的钻井地震资料,开展盆地的层序地层研究,揭示了礼乐盆地的地层层序,分析了礼乐台地的地震特征.礼乐滩碳酸盐台地...  相似文献   

11.
洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.   相似文献   

12.
针对“973”项目中“南海大陆边缘动力学与油气资源潜力”这一研究课题, 对在南海南部陆缘礼乐盆地采集的NH973-2测线进行了研究.对地震剖面的解释共划分出6个层序界面, 将地层划分为4个构造沉积单元.根据地震解释, 对不同时期断层的水平断距进行了测量及分析, 获取了与脆性拉张相关的伸展信息: 研究区的拉张作用可以分为2期, 主要的拉张作用发生在大陆裂谷阶段(古近纪), 形成了一系列的地堑—半地堑以及翘倾断块; 第2期拉张作用的时期为晚渐新世—早中新世, 断层活动强度明显变弱.在南海南部陆缘广泛发育了碳酸盐沉积, 其发育的时代和南海的海底扩张时期一致.对穿越礼乐滩区地震剖面伸展特征的分析表明, 根据断层水平断距获得脆性伸展因子与根据重力反演获得的全地壳伸展因子之间存在差异, 表明研究区的拉张在纵向上并非是均一的, 新生代的拉张经历了深度决定拉张模式.   相似文献   

13.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

14.
To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin,we constructed long geological sections across the shelf,slope and oceanic basin using new seismic data.Integrated gravity-magnetic inversion and interpretation of these sections were made with the advanced dissection method.Results show that the basement composition changes from intermediate-acid intrusive rocks in the sheff to intermediate-basic rocks in the slope.The Moho surface shoals gradually from 31 km in the sheff to 22.5 km in the uplift and then 19 km in the slope and finally to 13 km in the oceanic basin.The crust thickness also decreases gradually from 30 km in the northern fault belt to 9 km in the oceanic basin.The crustal stretching factor increases from the shelf toward the oceanic basin,with the strongest extension under the sags and the oceanic basin.The intensity of mantle upwelling controlled the style of basin structures from sheff to oceanic basin.In the Zhu 1 depression on the shelf,the crust is nearly normal,the brittle and cold upper crust mainly controlled the fault development;so the combinative grabens with single symmetric graben are characteristic.In the slope,the crust thinned with a large stretching factor,affected by the mantle upwelling.The ductile deformation controlled the faults,so there developed an asymmetric complex graben in the Baiyun (白云) sag.  相似文献   

15.
深海钻探与南海   总被引:1,自引:0,他引:1  
本文从南海北部陆缘,南部陆缘和南海中央海盆的地质构造与地球物理主要特下及尚未解决的重要地质问题来阐述在南海进行深海钻探的意义。南海北部陆缘是离散型大陆边缘,在陆壳与洋壳之间的磁静区是两者的过渡区。对它的研究直接关系到南海的形成演化与沉积盆地的成因,深海钻探需要解决的主要问题是了解磁静区基底下的物质是减薄的过渡壳还是古洋壳。地海南部南缘与北部陆缘不同,是聚敛型大陆边缘,它的构造与地球物理场特征与北部  相似文献   

16.
ABSTRACT

The South China Sea (SCS) is an excellent site for studying the process of conjugate margin rifting, and the origin and evolution of oceanic basins. Compared with the well-defined northern margin of the SCS, the western and southern segments of the SCS margin have not been researched in significant detail. To investigate the regional structure of the southwestern SCS, a gravity model is constructed, along with the lithospheric thermal structure along a wide-angle seismic profile. The profile extends across the conjugate margins of the Southwest Sub-Basin (SWSB) of the SCS and is based on the latest multiple geophysical measurements (including heat flow and thermo-physical parameters). The results show that the average thicknesses of the crust and thermal lithosphere along the profile are about 15 km and 57 km, respectively. The overall amount of extension of continental crust and lithosphere is more than 200 km. Thermal structure of the lithosphere shows that the continental margins are in a warm thermal state. The southwest SCS is characterized by ultra-wide, thinned continental crust and lithosphere, high Moho heat flow, early syn-rift faulted basins, undeformed late syn-rifting, and high seismic velocities in the lower crust. These various pieces of evidence suggest that the break-up of the mantle lithosphere occurred before that of the continental crust favouring a depth-dependent extension of the southwestern SCS margin.  相似文献   

17.
Crustal structure across the passive continental margin of the northeastern South China Sea (SCS) is presented based on a deep seismic survey cooperated between Taiwan and China in August 2001. Reflection data collected from a 48-hydrophone streamer and the vertical component of refraction/reflection data recorded at 11 ocean-bottom seismometers along a NW–SE profile are integrated to image the upper (1.6–2.4 km/s), lower (2.5–2.9 km/s), and compacted (3–4.5 km/s) sediment, the upper (4.5–5.5 km/s), middle (5.5–6.5 km/s) and lower (6.5–7.5 km/s) crystalline crust successively. The velocity model shows that the thickness (0.5–3 km) and the basement of the compacted sediment are strongly varied due to intrusion of the magma and igneous rocks after seafloor spreading of the SCS. Furthermore, several volcanoes and igneous rocks in the upper/middle crust (7–10 km thick) and a high velocity layer (0–5 km thick) in the lower crust of the model are identified as the ocean–continent transition (OCT) below the lower slope in the northeastern margin of the SCS. A thin continent NW of the OCT and a thick oceanic crust SE of the OCT in the continental margin of the northeastern SCS are also imaged, but these transitional crusts cannot be classified as the OCT due to their crustal thickness and the limited amount of the volcano, the magma and the high velocity layer. The extended continent, next to the gravity low and a sag zone extended from the SW Taiwan Basin, may have resulted from subduction of the Eurasian Plate beneath the Manila Trench whereas the thick oceanic crust may have been due to the excess volcanism and the late magmatic underplating in the oceanic crust after seafloor spreading of the SCS.  相似文献   

18.
南海北部陆缘地壳结构特征及其构造过程   总被引:5,自引:0,他引:5  
阎全人  王宗起 《地质论评》2000,46(4):417-423
根据“北部湾大陆缘地壳结构PS转换波测深”等地球物理测量结果,本文研究了南海北部陆缘的地壳结构特征,讨论了其白垩纪以来的构造过程。地球物理测量表明,由陆向海,南海北部陆缘地壳由陆壳、过渡壳变为洋壳,厚度由34km减薄至8km左右。垂向上地壳为3层结构模式。陆壳、过渡壳和洋壳的下地壳P波速度普遍较高。地壳伸展系数的计算表明南海北部陆缘伸展主要发育于陆坡地区。结合区域地质研究,本文认为:南海北部陆缘及  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号