首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
在构建分布式水文模型与生物地球化学模型的耦合模型(DTVGM-CASACNP)及应用元胞自动机-马尔科夫(CA-Markov)土地利用预测模型基础上,以滦河流域为例分析气候变化、土地利用/覆被变化(LUCC)及CO2浓度升高对径流的影响。研究结果表明: DTVGM-CASACNP耦合模型以及CA-Markov模型在滦河流域均具有较好的适用性;气候变化与土地利用/植被覆盖变化对滦河流域径流的影响较CO2浓度升高的影响程度大;未来不同情景下滦河流域2020—2049年径流呈减小趋势,大部分情景下年径流较基准年减少,与非汛期相比,滦河流域未来汛期径流对不同情景更敏感,总体上在汛期径流相对基准年减少,而在非汛期径流相对基准年增加。  相似文献   

2.
未来百年全球气候变化的影响是当前学术界激烈争议的议题,深入探讨全球气候变化的驱动机理才能正确认识全球气候变化。持续生长的青藏高原吸收了巨量的CO2,导致大气中CO2浓度大幅下降,使地球从温室气候进入到以冰期、间冰期交替出现为特征的冰室气候,青藏高原成为新生碳储库。在间冰期,青藏高原和蒙古高原将淡水输送到中低纬度内陆区(以下简称内陆区),导致内陆区的硅酸岩化学风化强烈,植被和湖相沉积发育,吸收了巨量大气CO2,是碳汇; 在冰期,青藏高原、蒙古高原将内陆区表层淡水与尘埃最终输送到高纬度地区,导致内陆区荒漠化,对大气CO2的吸收量远小于其自身的排放量,内陆区成为碳源,使大气CO2浓度上升。这是中新世以来大气CO2浓度维持低浓度、准动态平衡的机理。地表平均温度的变化驱动了淡水在高、低纬度地区之间循环。人类巨量碳排放使全球大气CO2浓度暂时快速上扬,全球变暖,淡水回到内陆区,导致内陆区变绿,硅酸岩化学风化作用增强,吸收大气CO2的能力大幅提高,内陆区又变成碳汇,抑制大气CO2浓度的进一步上升; 初步测算,最早2050年、最迟2090年,当大气CO2浓度达到(510±40)×10-6时,其快速上升的趋势将得到抑制; 未来百年尺度的全球气候变化受地球和太阳内部的构造活动所驱动,是周期性变化的、是可预测。  相似文献   

3.
Atmospheric Deposition (AD) provides external nutrients such as nitrogen (N), phosphorus (P) and iron (Fe) supporting the growth of phytoplankton in oceans and thereby exerts obvious impacts on carbon and nitrogen cycles and climate change associated. Specifically, the external nutrients derived from atmospheric deposition can promote the marine primary production and nitrogen fixation that enhance the ocean capacity in absorbing CO2; AD may also change a few pathways of carbon and nitrogen cycles in oceans and increase the emissions of biogenic aerosol and radioactive gases such as N2O, DMS, etc. Due to the underlying important impacts on climate and environmental change, AD and processes related have become the hot topics of multidisciplinary studies in the areas of ocean and atmospheric sciences, and the focus of some international core projects such as Surface Ocean Lower Atmosphere Study (SOLAS), an International Study of Marine Biogeochemical Cycles of Trace Elements and Their Isotopes (GEOTRACES) and Integrated Marine Biogeochemistry and Ecosystem Research (IMBER). With the severe air pollution and high frequencies of Asian dust events, as the downwind areas of big cities and dust sources, the East China Sea and adjacent North Pacific have received increasing influences of AD. Limited studies showed that the increase of AD indeed caused significant influence on carbon and nitrogen cycles in these immediately related oceanic areas and the study there would have a signature effect on global oceans. A multidisciplinary study on the impacts of AD in oceans, e.g., combing molecular biology and experimental ecology techniques to study primary production processes, utilizing isotopic techniques to trace the change of the nitrogen cycle, new evidences of ocean-biogenic aerosol emissions, etc. would be the focus in the future.  相似文献   

4.
青藏高原草地土壤有机碳库及其全球意义   总被引:55,自引:5,他引:50  
定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027×10hm2的草地有机碳量达到335.1973×108tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36×108tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO2达到11.7×108tC·a-1,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO2估计约有30.23×108tC.保护青藏高原草地对于全球变化意义重大.定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027×10hm2的草地有机碳量达到335.1973×108tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36×108tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO2达到11.7×108tC·a-1,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO2估计约有30.23×108tC.保护青藏高原草地对于全球变化意义重大.  相似文献   

5.
人类巨量碳排放究竟导致什么后果,争议颇大,只有深入研究始新世以来大气CO2浓度与环境变化,才有可能正确认识未来人类自身巨量碳排放之后果。大量研究揭示出: 从始新世到渐新世末期,大气CO2浓度大幅下降,全球变冷,形成了大陆冰川; 中新世至今,大气CO2浓度在低浓度背景之下长周期缓慢下降。当前尚不清楚何种机制主导了这一变化过程,也不清楚形成大陆冰川的水来自何方。为此,从青藏高原深部碳循环、表层水循环和环境变化的角度探讨这些问题,再分析未来人类巨量碳排放之后果。青藏高原在生长、隆升过程中,通过硅酸岩化学风化、植物光合作用、陆内俯冲(深埋)、水岩反应等方式,持续将巨量大气CO2转化为富含碳元素的固、流体,封存在青藏高原新生的厚地壳之中,大幅降低了大气CO2浓度,导致了全球变冷、大陆内陆(含青藏高原,下同)表层失水变干,形成了大陆冰川。渐新世—中新世之交,青藏高原生长到改变大气环流的规模,形成了亚洲季风,大陆内陆进一步荒漠化,捕获CO2的量大幅下降,并与青藏高原内部所释放CO2的量达到了准动态平衡,这是中新世以来大气CO2浓度变化的主要机制。人类巨量碳排放彻底扭转了大气CO2浓度长周期缓慢下降的趋势,大陆冰川因全球变暖所形成的液态水不会长期停留在海洋里,而以大气降水的方式重新回到干冷的大陆内陆,青藏高原将因此再次成为巨型水塔,缓解30多亿人的清洁饮用水问题。持续生长的高原和当前干冷荒漠化的大陆内陆通过前述多种方式固化人类排放的巨量CO2,导致未来大气CO2浓度在较高浓度背景下保持稳定,届时沙漠变绿洲,黄土高原变成有机质丰富的黑土高原,人居环境大幅改善; 但在盆地内部,PM2.5难以扩散,易形成雾霾。全球平均海平面因海水热膨胀而缓慢上升,上升速率约为1 mm/a。水主要在大陆冰川与内陆表层之间循环,与海平面升降之间没有因果关系。因此,人类巨量碳排放所导致的全球变暖对于人类自身的发展是利大于弊。  相似文献   

6.
2030年前实现碳达峰,2060年前实现碳中和是2020年我国提出的国家重大战略目标。以当前我国的二氧化碳排放及能源结构现状,要实现这一伟大目标形势十分严峻。介绍了全球碳循环过程,阐述了碳源与碳汇对于大气CO2浓度的贡献,从减源与增汇2个方面,初步分析了地质调查在推动碳达峰与碳中和目标实现中的作用与可能的贡献,并提出了地质解决路径。生态碳汇固然非常重要,但仍不能完全消除人为CO2排放,且其具有不确定性,因此,需要充分发挥地质调查作用、挖掘地质碳汇潜力,使其成为实现碳中和目标过程中不可或缺的有力支撑。  相似文献   

7.
Marine carbon cycle of the South China Sea is an important part of global carbon cycle. Researches on the air-sea CO2 flux in the South China Sea will help us understand the global carbon cycle and improve the global carbon system parameter database. This paper concisely summarized the changes of partial pressure of CO2 (pCO2), air-sea CO2 fluxes (FCO2), and related environmental factors in four regions in domains in the South China Sea. The low-salinity area of the upper reaches of the Pearl River estuary in the northern of South China Sea shelf area acted as a strong source of atmospheric CO2, with high pCO2(405.3~810.6 Pa)all year round. The lower area of the Pearl River estuary (salinity > 33.7) acted as a weak sink of CO2 in winter, with relatively low pCO2 (35.2~37.0 Pa). The northern slope/basin in the South China Sea acted as a source of CO2 in warm seasons with a relatively high pCO2 (45.0 Pa), and acted as a sink of CO2 in cold seasons with a relatively low pCO2 (34.7 Pa). The west of the Luzon Strait acted as a sink of CO2 in spring, while it acted as a source of CO2 in other seasons, with relative high pCO2 (38.4~47.5 Pa) in winter. The central/southern basin in the South China Sea acted as sources of CO2, with relative high pCO2 (41.0 Pa) all the year. Generally, the estimation of annual sea-air CO2 fluxes showed that most domains in the South China Sea served as weak sources of atmospheric CO2. In the future, more researches should be focused on the time-series of sea surface pCO2 and the remote sensing of the sea-air CO2 fluxes.  相似文献   

8.
大气有机氮沉降及其对海洋生态系统的影响   总被引:8,自引:0,他引:8  
有机氮是大气中含氮物质的重要组成部分。大气中有机氮化合物的种类繁多,按其存在的形态可分为:氧化型、还原型以及生物/颗粒型有机氮,这些有机氮可来自自然源和人为源的直接释放,也可来自于无机氮与碳氢化合物间的大气化学反应。大气有机氮对海洋的输入不仅可以促进海洋初级生产力的增长、进而增加二氧化碳的吸收速率,还可能影响海洋生态系统的结构和功能。分析了海洋大气有机氮沉降的最新研究进展,结果表明:气溶胶中的有机氮在总氮中所占的比例为39.6%±14.7%;陆地雨水中以有机形式存在的溶解氮为30.2%±15.0%,而海洋上,溶解有机氮可达到雨水中总氮的62.8%±3.3%。可见,目前仅包括无机氮沉降的入海通量可能低估了1/3。因此,开展大气有机氮沉降的研究,有助于评价有机氮在全球氮循环中的作用,以及对海洋生态系统的短期和长期的影响。  相似文献   

9.
非饱和带属于地球关键带,与人类生存环境及安全健康关系密切,而CO2对生态环境及全球气候变化的影响至关重要。为了探索高浓度CO2入侵非饱和带对生态环境可能带来的风险,基于长安大学水与环境原位试验场CO2试验平台,向种植有5种典型植物(黑麦草、小麦、玉米、豌豆和苋菜)的土壤中长期注入浓度为5%、10%和15%的CO2气体,评估CO2入侵对植物和土壤的潜在影响。对表生植物及土壤样品(深度为20~30 cm)的理化性质分析表明:高浓度CO2明显抑制了植物的生长,会导致植株高度、叶片数和果实重量下降;土壤矿相和理化性质也有微小变化,表现为土壤pH值的变化以及氮、有效钾、有效磷等的减少。通过分析植物的光合作用、渗透调节作用以及抗氧化系统的变化,不同的植物对CO2胁迫表现出不同且复杂的响应,总体上C3单子叶植物黑麦草和C4单子叶植物玉米显示出比其他植物更高的敏感性,表明它们有潜力作为评估CO2生态影响的指示植物。  相似文献   

10.
胡丽莎  常春  于青春 《地球科学》2012,37(2):301-306
实施CO2的地质储存是目前公认的减缓全球变暖的有效途径之一.潜在的储存场所包括衰竭的油气藏、深部不可开采煤层及深部咸水层.其中, 深部咸水层储存潜力最大.在发挥作用的诸多机理中, 溶解埋存具有埋存量大、作用时间较长以及安全性高的特点.在评价深部咸水含水层CO2溶解储存潜力时, 溶解度是一个关键参数.提出了测定咸水含水层地层水CO2溶解度的方法, 并将其实际应用于鄂尔多斯盆地山西组地层水.鄂尔多斯盆地是我国重要的能源基地, CO2排放量大, 排放浓度高.采集了野外实地水样, 进行了化学成分分析, 并人工合成该水样; 测定了40~80 ℃、8~12 MPa条件下CO2在该水样中的溶解度, 其结果可为评价鄂尔多斯盆地深部咸水含水层埋存能力提供依据.   相似文献   

11.
李文宝  王汝建 《地球科学》2016,41(5):742-756
海平面的变化往往对区域生态环境、社会经济造成严重影响.通过对全球相对海平面变化(relative sea level,简称RSL)记录的再分析结果,合成了近2 Ma BP以来的全球RSL变化记录,分析了合成RSL记录对原始RSL记录数理特征的继承性,并基于频谱、滤波等数理分析验证了合成RSL记录的合理性.在此基础上,讨论了合成RSL与大气CO2浓度、中高纬度海域表层海水温度(sea surface temperature,简称SST)、全球大洋底栖氧同位素(δ18OB)等参数指标间的相关性,结果显示:(1) 合成RSL不仅与原始RSL记录的变化趋势基本一致,继承了原始RSL记录对全球气候变化的响应特征,而且显示出合成RSL记录对地球轨道参数周期变化响应明显;(2) 近2 Ma BP以来,在冰期-间冰期旋回中,合成RSL与δ18OB变化呈良好的负相关,相关系数r平均值可以达到约0.81,高于合成RSL与大气CO2浓度及中高纬度海域SST变化的相关系数;(3) 在地球轨道参数周期上,合成RSL与极地冰盖体积(δ18OB)的变化几乎同时,在偏心率周期上,合成RSL落后于SST和大气CO2浓度变化;在斜率周期上,合成RSL落后于SST变化而领先于大气CO2浓度变化.推测这些变化的诱导因素可能是在太阳辐射量改变的前提下,大气CO2浓度及大洋SST变化对极地冰盖体积产生了差异影响,进而引起海平面发生变化.   相似文献   

12.
Many recent researches show that rock-weathering-related carbon sink, especially carbonate-weathering-related carbon sink, actively takes part in the modern global carbon cycle, which might greatly contribute to balancing global carbon budget. Some new opinions on flux, time scale and effect of rock-weathering-related carbon sink were released in IPCC fifth Assessment Report (AR5). The flux of global rock-weathering-related carbon sink is about 0.4 Pg C/a in AR5 report, which accounts for about 1/2~1/3 of unbalanced global carbon budget. New time scale of global rock-weathering-related carbon sink was released. Time scale of silicate-weathering-related carbon sink is 104~ 106 year, while carbonate-weathering-related carbon sink (karst processes) is 103~104 year. A highlight is that rock-weathering-related carbon sink is listed as one of four carbon dioxide removal methods in AR5 report, whose time scale is 102~ 103 year. Although AR5 report released these new opinions, it is still thought that the rate of global rock-weathering-related carbon sink is currently too small to offset the rate at which fossil fuel CO2 is being emitted. According to many researches in the field of rock weathering science in the past decades, this review discussed the shortage in carbon flux, time scale and effect of rock-weathering-related carbon sink in AR5 report. Many recent researches indicated that the carbon sink originated from carbonate rock weathering was a fast and sensitive geochemical process, which showed multiple time scales (diel, seasonal, annual or storm event). A new model based on H2O carbonate-CO2-aquatic phototroph interaction was established, which coupled geological, land surface water, and submerged phototroph carbon cycle process. The global carbon sink from carbonate rock weathering in new model is 0.477 Pg C/a,which accounts for about 39%~59% of unbalanced global carbon budget. Some key scientific issues on rate, stability, controlling mechanisms and scaling of rock-weathering-related carbon sink should be vitally concerned in the future, which could greatly contribute to balancing the global carbon budget.  相似文献   

13.
全球气候变化问题使岩溶系统碳循环的研究倍受关注,有关微型生物及其碳酸酐酶在岩溶系统碳循环中的作用的认识也在不断深入。文章回顾了微型生物及其碳酸酐酶在碳酸盐岩风化以及碳酸盐岩沉积过程中的作用过程及作用机制,指出未来的研究需结合不同岩溶生态环境,量化微型生物及其碳酸酐酶对岩溶生态系统碳增汇的影响,为深入研究微型生物及其碳酸酐酶对岩溶碳汇的贡献、增加岩溶生态系统碳汇的能力、助力实现碳中和提供参考。   相似文献   

14.
Increasing green investment is one of the important ways to promote sustainable development in the Belt and Road (B&R) region. We predicted the effects of China’s investments on the CO2 emission patterns in B&R areas under the scenarios of No-Investment (NIS), Business-as-usual Investment (BIS) and the Strengthening Investment Scenario (SIS) based on the improved Solow model and a CO2 intensity model. The results reveal that the GDP of B&R region will cumulatively increase by 45.16 and 97.02 trillion USD, and the CO2 will cumulatively decrease by 44.16 and 79.47 Gt by 2100, respectively, under BIS and SIS, compared with NIS. The cumulative decrease of CO2 emissions, 44.16 and 79.47 Gt, will lead to global CO2 concentration decrease by approximately 2.41 mL/m3 and 4.33 mL/m3 in 2100, respectively. Regionally, China’s investments have the most obvious role in promoting the economic development and CO2 emission reductions of Southeast Asia and its surrounding areas. In the short term (2017-2050), China's investment may lead to a small increase in CO2 emissions in Southeast Asia and its surrounding areas, India and the Central and Eastern Europe, but in the long term (2017-2100), China's investment will promote the reduction of CO2 emissions in all regions, especially in Southeast Asia and surrounding areas and the Middle East Central Asia region. This shows that China's investment is conducive to promoting the green development of the B&R regions.  相似文献   

15.
Eiichi Tajika  Takafumi Matsui 《Lithos》1993,30(3-4):267-280
The recent theoretical studies on the formation and evolution of the atmosphere and oceans of the Earth are reviewed. Impact degassing during accretion of the Earth would probably generate an impact-induced steam atmosphere on the proto-Earth. At the end of accretion, the steam atmosphere became unstable and condensed to form the proto-ocean with almost the present mass of ocean. The steam atmosphere would have thus evolved to the proto-CO2 atmosphere during the earliest history of the Earth because CO in the proto-atmosphere may be photochemically converted to CO2. However, CO2 in the proto-atmosphere has decreased with time through the global carbon cycle which may have stabilized the terrestrial environment against an increase in the solar luminosity. The continental growth during Hadean and Archean would therefore have a significant influence on the carbon cycle and the surface temperature. It is also suggested that the continental growth is a necessary condition for the terrestrial environment to evolve to the present state. Both the impact degassing and the subsequent continuous degassing are suggested to have played a major role in the formation and evolution of the atmosphere and ocean. In particular, most of N2 may have been produced by the impact degassing during accretion, and the contribution of the subsequent continuous degassing is at most 10% for N2. As a consequence, after the CO2 level decreased to less than 1 bar, the atmosphere may have been at about 1 bar and composed mainly of N2 for most of the subsequent history of the Earth.  相似文献   

16.
疏勒河上游多年冻土区植物生长季主要温室气体排放观测   总被引:1,自引:1,他引:0  
选取青藏高原东北部疏勒河上游多年冻土区的高寒草甸样地为研究对象, 对2011年植物生长季(6-10月)主要温室气体(CO2、 CH4CH4和CO2)的排放进行了观测. 结果显示: 疏勒河上游多年冻土区高寒草甸地表CO2、 CH4和N2O排放速率范围分别为7.58~418.60 mg·m-2·h-1, -0.20~0.14 mg·m-2·h-1和-27.22~39.98 μg·m-2·h-1. 0~10 cm土壤温度、 含水量和盐分与CO2和CH4排放速率显著相关, 但与N2O排放速率无显著相关. 日均排放速率显示, CO2和N2O在整个观测期均表现为排放; CH4在植物返青期和生长旺盛期表现为排放, 在枯黄期伴随表层土壤发生日冻融循环时为吸收. 从9月30日12:00-10月6日14:40, 表层0~10 cm土壤经历了3次日冻融循环, CO2和N2O日均排放速率分别由冻融前的60.73 mg·m-2·h-1和9.91 μg·m-2·h-1提高到122.33 mg·m-2·h-1和11.70 μg·m-2·h-1. 土壤温度、 含水量和盐分是影响CO2和CH4排放的重要因子, 表层土壤冻融交替作用可提高地表CO2和N2O的排放速率.  相似文献   

17.
目前约25%化石燃料来源的CO2被海洋吸收,缓解了人类活动对气候变化的影响。海洋通过多个概念的碳泵将大气中的CO2输送到深海。深海高压和低温的特点有利于CO2溶解,目前已经储存了相当于大气含量50倍的无机碳,另外,深海沉积物中还储存有大量甲烷水合物。认识深海中的碳循环过程,对于保护海洋固碳能力、开发固碳潜力有重要意义。总结了国内外在海洋碳库、碳输送研究方面的进展,重点讨论了深海C元素转化循环的过程以及高压对生命活动的影响。微生物驱动了深海碳循环,大部分浮游植物所包含的有机碳在沉降过程中被微生物矿化成CO2以及转化为难降解的有机碳,使深海成为巨大的、长周转时间的有机碳库; 高压能提高古菌甲烷厌氧氧化的活性,提升屏蔽海底甲烷释放的能力,同时,高压下氧化甲烷的过程中不仅产生碳酸氢盐,还产生可支持异养生物的乙酸,因此,全球甲烷厌氧氧化的通量可能被低估; 高压下细胞代谢额外产生的氨,可作为氨氧化古菌固定无机碳的潜在能量来源。总之,研究现在以及未来的人类活动对深海碳循环过程的影响以及环境效应,评估应用深海作为地球工程技术平台封存CO2的可能性,都迫切需要加深对碳循环在内的深海元素循环的认识。  相似文献   

18.
陆生植物氮同位素组成与气候环境变化研究进展   总被引:3,自引:0,他引:3  
近年来,由于植物氮同位素组成(δ15N)记载了气候环境变化的信息,因而被广泛应用于全球变化研究中,成为古气候环境再造和了解现代气候环境变化信息的有力工具。然而,人们对气候环境引起的δ15N变化及其指示的气候环境意义并不完全清楚,这就有可能限制植物δ15N在古气候环境变化等领域研究中的应用。在概述植物氮同位素分馏和植物不同氮源的氮同位素分布的基础上,分析了温度、降水、大气CO2浓度和海拔高度等气候环境因子对陆生植物δ15N的影响以及它们的关系。指出了目前研究中存在的问题及其研究前景,认为在全球变化研究中利用植物氮同位素技术不仅可以重建古气候环境(如重建大气CO2浓度变化),揭示历史时期温度、降水的变化,而且还可以在一定的时间和空间上综合反映生态系统氮循环的特征。  相似文献   

19.
Carbon sink produced during rock weathering is critical to global carbon cycles. In this work, we analyzed the major ion chemistry of the Chishuihe River Basin, and the major ion composition of the Chishuihe River system and the principal component analysis was applied for estimating the weathering rate and atmospheric CO2 consumption via the rock chemical weathering. The results demonstrated that the chemical composition of the river was dominated by Ca2+, Mg2+, HC and S. The average concentration(317.88 mg/L) of the total dissolved solids within the Chishuihe River was higher than the average value (65 mg/L) of world rivers. The Gibbs graph combining major ion element ratio analysis indicated that the catchment major ion composition mainly originated from rock weathering, primarily from carbonate weathering, sparsely from silicate weathering. Carbonate and silicate weathering contributed 70.77% and 5.03% separately to the dissolved loads. The anthropogenic and precipitation impact was limited. According to calculation based on principal component and the ion composition characteristics, the chemical weathering rate was 126.716 t/(km2·a), significantly higher than that of the Yellow River and Yangtze River, and also higher than the average rate of the global major rivers. The CO2 consumption flux based on annual average runoff was 10.96×109 mol/a, and the CO2 consumption rate by chemical weathering was 5.79×105 mol/(km2·a).  相似文献   

20.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号