首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
煤心损失气量计算方法在工程条件、煤心性质等方面均有约束条件和适用范围,探讨该方法在页岩气中应用的适用性尤为重要。分析认为,该方法约束条件和适用范围的提出,主要是基于煤层气赋存状态的多样性以及不同煤心损失气、解吸气和残余气占比的差异性。煤层气赋存受控于煤层演化程度及结构,损失气、解吸气和残余气占比与工程条件密切相关。页岩与煤相比,在岩石性质、组成、孔隙结构、比表面特征等方面存在较大差异,加之页岩岩心与煤心钻取条件的不同,决定了煤心损失气量计算方法应用于页岩气的适用条件是:页岩中微孔占有明显优势;比表面积大、具有很强的气体吸附能力;页岩气赋存状态以吸附态为主;提心过程中逸散气量小。  相似文献   

2.
煤储层具有大量的裂隙和孔隙,这些孔容为游离气的储集提供了必要条件;而煤中游离气含量对煤层气藏的开发影响较大。通过对不同粒径煤粉的游离气含量模拟试验,实测了不同粒径煤粉在吸附甲烷12 h后排出的气量,并计算出其中吸附气量和游离气量的大小,分析了煤层裂隙和孔隙中游离气的含量。研究认为:煤破碎过程中,煤中裂隙和孔隙的破坏使煤层表面裸露,减少了煤中游离气的储集空间,游离气含量也随之减少;对于不同粒径的煤粉,其游离气含量占总气量的6.3%~17.3%,且煤粉粒径越大,游离气含量越多。   相似文献   

3.
煤层含气量的精确测定是非常关键的。实践发现,煤层温度、粒度对损失气量计算误差存在较大的影响。本文利用自动等温吸附仪的实时压力测量系统得到不同粒度煤颗粒样品的解吸曲线,模拟计算损失气量与实际解吸气量之间的误差率,研究了不同解吸温度、不同样品粒度以及饱和吸附压力等对损失气计算误差的影响,并在此基础上提出了减少损失气计算误差的方法。研究结果表明,解吸温度增高、样品粒度变细可以急剧增大损失气计算误差,当煤层埋藏深度较深、煤样较为破碎时,损失气计算会存在很大的误差,严重影响煤层原位含气量的正确判断;减少损失气量回归计算的时间可以明显减小计算误差率,认为使用样品装罐后20 min内的数据进行损失气量回归估算是比较可行的方案。  相似文献   

4.
基于现行的煤层瓦斯与煤层气测试标准,从适用范围、采样要求、仪器设备、解吸过程、残留气获取、损失气计算6个方面对比了煤层气、煤层瓦斯测试标准存在的差异,并从损失气、解吸气、残余气等三个方面分析了煤层气(煤层瓦斯)测试标准差异对测试结果的影响。分析结果表明损失气量是影响煤层气(煤层瓦斯)结果准确性的关键因素,但其受采样工艺影响较大,建议通过统一选择绳索取心工艺增加煤层瓦斯测试精度。  相似文献   

5.
为了提高彬长矿区大佛寺井田地面直井开发煤层气的产能和经济效益,利用煤储层数值模拟方法对孔隙度、煤层厚度、渗透率以及气含量等煤储层参数进行产能敏感性分析。研究表明:对于大佛寺井田煤层特征来讲,直井累计产气量和稳产期平均日产气量对气含量的敏感性最大,其次是孔隙度和渗透率,对煤层厚度的敏感性最小。煤储层参数敏感性的认识对该区煤层气开发布井、选层具有一定的指导意义。  相似文献   

6.
西北侏罗纪陆相盆地低煤级煤层气藏勘探开发近年来受到越来越多的关注,煤层气成藏机制是该区煤层气勘探开发的重要基础工作,而煤层气储集是煤层气成藏的关键地质过程。研究表明:准噶尔、土哈两个侏罗纪陆相盆地低煤级煤储层具有高孔容、高孔比表面积、高游离气储集潜力和低原位吸附气体能力的特征,深部煤储层储集气量显著高于浅部煤储层;浅部煤储层中基本上为吸附气,深部煤储层中吸附气、游离气、溶解气共存,游离气的重要性随埋深增加而增大;构造高点和构造圈闭对深部煤层气成藏具有重大影响,煤层气与常规气兼探与共采在理论上可行,深部煤层气藏可能较浅部煤层气藏更具开发价值。  相似文献   

7.
准噶尔和吐哈盆地侏罗系煤层气储集特征   总被引:7,自引:0,他引:7  
西北侏罗纪陆相盆地低煤级煤层气藏勘探开发近年来受到越来越多的关注,煤层气成藏机制是该区煤层气勘探开发的重要基础工作,而煤层气储集是煤层气成藏的关键地质过程。研究表明:准噶尔、土哈两个侏罗纪陆相盆地低煤级煤储层具有高孔容、高孔比表面积、高游离气储集潜力和低原位吸附气体能力的特征,深部煤储层储集气量显著高于浅部煤储层;浅部煤储层中基本上为吸附气,深部煤储层中吸附气、游离气、溶解气共存,游离气的重要性随埋深增加而增大;构造高点和构造圈闭对深部煤层气成藏具有重大影响,煤层气与常规气兼探与共采在理论上可行。深部煤层气藏可能较浅部煤层气藏更具开发价值。  相似文献   

8.
游离气是由煤系地层生成的烃类气体,游离于储层储集空间之中而形成天然气气藏,与煤层中的吸附气呈共生关系.根据游离气储集层的岩性及空间组合特征,可将其分为3种类型:煤岩顶板砂岩型、煤岩顶板灰岩型、不整合面灰岩型.测井中子密度重叠法是判别煤系地层游离气层主要的方法之一,拉梅常数、剪切模量及密度预测法可有效识别砂岩中的气饱和层.AVO高异常可准确解释煤层气的富集部位,等温曲线法及补偿中子变化量法能够有效计算煤层气的含气量.游离气与煤层气的成藏特点使得煤层气与游离气共同开发成为可能.以山西沁水盆地为例,介绍了在查明煤层气和游离气富集高产部位后,利用高密度勘探开发井网,有望实现煤层气与煤系地层浅层游离气的联合开发.  相似文献   

9.
深部煤层气测井评价方法及其应用   总被引:1,自引:0,他引:1  
煤层气地球物理测井评价是获取煤层气参数的重要方法。根据实际资料总结了胜利油田山东探区深部煤层的测井响应特征,实现了对煤层的自动识别划分。结合前人的工作,给出了煤层组分、孔隙度和渗透率等参数的定量计算方法,并改进了煤阶划分和含气量估算方法。实际资料处理结果表明,该套方法的煤层识别吻合率和参数定量计算可信度均较高,为评价煤层气资源提供了可靠参数。  相似文献   

10.
我国低煤级煤层气资源量大,约占煤层气资源总量的43.5%。由于对低煤级煤层气赋存特征的认识程度有限,影响了低煤级煤层气的勘探开发。通过对准噶尔盆地南缘低煤级煤储层孔隙与裂隙、吸附特征、含气性等方面的分析,认为该区煤的吸附性能较好,煤中宏观裂隙与显微裂隙发育。相对于中、高煤级煤,该区煤储层大、中孔所占比例较高,为游离气赋存提供了场所。运用气体方程估算了准噶尔盆地东南缘西山窑组B煤组主力煤层中的游离气含量,得出煤层总含气量为2.85~8.94 m3/t,平均为6.12 m3/t。其中游离气占总含气量的2.89%~5.14%,平均3.90%。游离气含量的估算为研究区更加科学合理的进行煤层气勘探开发提供了依据。   相似文献   

11.
煤层含气量预测方法   总被引:11,自引:2,他引:9  
含气量是进行煤层气资源计算与选区评价的关键。在有效含气量数据太少,不能满足研究工作需要的情况下,根据少量实测含气量数据和煤的等温吸附曲线、储层压力梯度、煤的水分、灰分数据,预测未知区煤层气量,是一种行之有效的方法。实践证明,预测含气量数据与实测含气量数据比较接近,能保证资源量计算及资源评价结果的可靠性。  相似文献   

12.
煤层游离气对于煤层气藏高产起着非常关键的作用,目前尚缺乏识别煤层游离气的有效手段,存在的困难和挑战主要表现在2个方面:如何鉴定煤层气井中存在游离气;一般常用的测井背景值和中子密度重叠法不能有效证明煤层游离气的存在。通过构建井间声波背景值,结合含气饱和度及排采数据对煤层游离气进行定性识别,进而对识别结果进行验证。实验表明,利用井间声波背景值法识别煤层游离气可以排除煤质和煤层含水性等因素影响,对于识别煤层游离气具有指导作用。通过该方法对Z区块3号煤层进行游离气识别,含游离气井占总分析井的50%,通过井间声波背景值、含气饱和度及排采数据分析相结合进行交互检验,吻合率在80%以上。   相似文献   

13.
煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读   相似文献   

14.
为研究沁水盆地东北部煤层气成藏特征与产出控制因素,基于寺家庄区块煤层气勘探和生产资料,从地质构造、煤厚与煤层结构、埋深和水文地质特征等方面研究了煤层含气性影响因素,并结合压裂排采工艺和煤体结构等因素探讨了煤层气井产能控制因素。结果表明:(1) 研究区煤储层含气性受构造影响较大,在褶皱的轴部及旁侧构造挤压带,多呈现出高含气量,尤其是向斜轴部。在陷落柱和水文地质条件叠加作用下,15号煤层含气量整体较8、9号煤层低,且8、9号煤层含气饱和度也整体高于15号煤层。(2) 8、9和15号煤层含气性均表现出随煤层埋深增加而增大的趋势,但随埋深增加,构造应力和地温场的作用逐渐增强,存在含气量随埋深变化的“临界深度”(700 m左右)。煤层含气性也表现出随煤层厚度增加而增大的趋势,煤层结构越简单,煤层含气性越好。(3) 研究区中部的NNE?NE向褶皱与EW向构造叠加地区,因较大的构造曲率和相对松弛的区域地应力,具备较好渗透率条件和含气性,故成为煤层气高产区。(4) 发育多煤层地区采用分压合采技术可以有效增加产气量,多煤层可以提供煤层气井高产能的充足气源,且多个层位的同时排水降压可使不同煤储层气体产出达到产能叠加,实现长期稳产,含气性较好及游离气可能存在的区域可出现长期持续高产井。   相似文献   

15.
勘探实践发现沁水盆地潘庄、潘河区块及鄂尔多斯盆地保德区块煤层气井累计产量远远大于原始计算的地质探明储量。该现象对体积法计算的煤层气资源储量提出了挑战,同时为全面“上储增效”提出了新的方向。在采用体积法计算煤层气储量时,含气面积、含气量的准确性以及煤岩密度与煤层厚度的非均质特征都会对储量参数的准确性产生影响。其中,由于取心测试过程的局限性,煤层含气量的数值常存在一定的误差。本次研究基于鄂尔多斯盆地和沁水盆地的煤层气井生产数据并结合等温吸附实验结果提出了计算储层临界最低含气量的方法(临界最低法)。将校正后的临界最低含气量与实测含气量(基于美国矿业局直接法(USBM)和史密斯-威廉姆斯法)进行对比,并剖析含气量测试损失量的地质控制机理。结果表明:在中低至中高煤阶(Ro=0.7%~2.1%)范围,临界最低法计算的含气量总体高于其它两种方法计算的含气量,临界最低法在中低煤阶至中高煤阶具有较强的适应性。在高煤阶(Ro=2.1%~2.8%)范围,临界最低法计算结果可以与取心测试结果相互验证。总体上,煤层含气量测试(USBM法)损失量受不同煤阶煤岩孔裂隙发育特征、煤体结构、含气饱和度及逸散时间的影响。含气量测试损失量与孔渗发育特征、构造煤发育程度、含气饱和度及逸散时间呈正相关。此外,针对未取心的煤层气井,可以采用钻井岩屑测试等温吸附参数进而利用临界最低法求取储层含气量,为煤层气进一步的勘探开发提供数据基础。  相似文献   

16.
针对鄂尔多斯盆地东缘不同地区煤层含气量分布不同的特点,通过分析三交-柳林、大宁-吉县和韩城地区的构造及其各主采煤层含气量分布特征,探讨了鄂尔多斯盆地东缘3个地区煤层含气量分布的构造控制作用。结果表明,燕山期构造运动是整个鄂尔多斯盆地东缘的关键构造事件;本区构造作用对煤层含气量分布的控制主要体现为控制煤层赋存状态,而构造部位、构造展布和构造性质,则控制煤的变质作用以及煤层气的保存条件;三交-柳林地区仅局部单斜构造为煤层气有利富集区,大宁-吉县地区煤层气赋存构造条件较好,应作为鄂尔多斯盆地东缘煤层气勘探开发的重点区域,韩城东部矿区煤层气赋存较差,且北压南拉的构造格局常造成含气量南低北高。   相似文献   

17.
含气量预测的准确性对于煤层气开发至关重要。测井曲线作为含气量表征的最常用资料,不同测井资料对于含气量变化的响应灵敏程度不一样,单一的测井曲线预测含气量稳定性差。为了研究煤层含气量的精确预测方法,以澳大利亚S区块的煤层气为研究对象,以实验室分析数据、测井资料为基础,通过测井资料响应特征分析,实现测井资料的扩径校正以及含气量数据深度归位处理。在此基础上,根据含气量与测井资料相关性分析结果,选择煤层埋藏深度、声波时差、自然伽马和长源距密度等相关性好的测井数据作为含气量预测的基础参数。以基础参数对含气量的敏感性分析结果为依据,构建含气量预测的复合参数,建立基于测井资料的含气量复合参数预测模型。通过软件中编写含气量计算的外挂模块实现煤层气井含气量批量计算。复合参数预测模型在实际应用中,可以克服传统煤层含气量计算准确率低、稳定性差的缺点,同时可以实现批量化计算,极大地加快含气量计算进度,能够为S区块的后续煤层气开发奠定地质基础。   相似文献   

18.
宁夏汝箕沟矿区煤层气地质学特征   总被引:2,自引:0,他引:2  
根据煤田勘探、煤矿开采阶段的资料,结合室内外观测测试,探讨了二号煤的煤层气地质学特征: a. 汝箕沟矿区二号煤厚度巨大、连续性强、含气量高,为煤层气开发奠定了物质基础; b. 煤阶高,但基质孔隙、割理、外生裂隙发育,储层渗透性好; c. 区域上异常高压的分布范围可能比较广泛,且吸附等温线反映出利于降压排采的特征。这些都充分说明该区煤层气的勘探开发可与沁水盆地相媲美,且在煤厚、渗透性、异常压力、吸附等方面优于沁水盆地。   相似文献   

19.
张家口宣东矿是一个高瓦斯矿井。为了查明矿井煤层气赋存规律及其变化原因,通过大量勘查钻孔及井巷揭露资料,深入研究了辉绿岩体侵入时代、产状特征及空间分布,分析了煤层煤质及煤层气变化规律,探讨了辉绿岩对煤层气的影响。结果表明:宣东矿辉绿岩以岩床形式侵入到侏罗纪下花园煤系中,导致本区异常古地热力场的形成,促使煤层发生区域热变质作用;煤的热演化变质作用是其发生二次生烃演化的直接原因,而这种生烃作用是影响本区煤层含气性的关键因素,它促进了煤层气的形成,且本区煤类及煤层气的分布特征与辉绿岩床的赋存特征很吻合;辉绿岩床形成良好的盖层,封闭了煤层气的逃逸通道,对煤层气的后期保护和富集提供了条件。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号