首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Revealing the evolution of the past geomagnetic field is of dual interest. It is crucial to estimate the conditions of the Earth's deep interiors, while it offers a reliable absolute dating tool of burned archaeological artifacts. Although a substantial effort was paid during the last decade to construct a reference archaeomagnetic curve for Mesoamerica, mostly absolute intensity variations are revealed for the previous three millennia. Here, we report an updated directional (inclination and declination) reference secular variation curve based on volcanic lava flows and archaeological artifacts carrying full thermoremanent magnetization. A bootstrap method with penalized cubic b-splines was used to develop the directional curve. Relocation error exercise and strict selection criteria allowed to use 82 well-defined palaeodirections. Both data distribution density and the firm relationship between the ages and samples, ensure the reliability of the curve for the dating purposes. The combination of directional data with available intensity variation highlights some sudden geomagnetic field fluctuations.  相似文献   

2.
Data on the geomagnetic field intensity in the first millennium BC and the 8th–10th centuries AD are obtained from the study of materials from the El Molon archaeological monument (Spain). A 75-yr averaged curve of the variation in the geomagnetic field intensity in the area of the zero meridian over the last three millennia is constructed from a set of new and previously obtained data on the geomagnetic intensity variations in Spain and France. The field intensity smoothly decreases in the time interval studied, and variations a few centuries long are superimposed on this trend. Unlike the present-day relationship, the average level of the geomagnetic field intensity in Spain in the first millennium BC was higher than in the Caucasus.  相似文献   

3.
This paper examines the limitations and deficiencies of the current British archaeomagnetic calibration curve and applies several mathematical approaches in an attempt to produce an improved secular variation curve for the UK for use in archaeomagnetic dating. The dataset compiled is the most complete available in the UK, incorporating published results, PhD theses and unpublished laboratory reports. It comprises 620 archaeomagnetic (directional) data and 238 direct observations of the geomagnetic field, and includes all relevant information available about the site, the archaeomagnetic direction and the archaeological age. A thorough examination of the data was performed to assess their quality and reliability. Various techniques were employed in order to use the data to construct a secular variation (SV) record: moving window with averaging and median, as well as Bayesian statistical modelling. The SV reference curve obtained for the past 4000 years is very similar to that from France, most differences occurring during the early medieval period (or Dark Ages). Two examples of dating of archaeological structures, medieval and pre-Roman, are presented based on the new SV curve for the UK and the implications for archaeomagnetic dating are discussed.  相似文献   

4.
The geomagnetic field variation pattern in the second and third quarters of the first millennium BC is obtained from data on ceramic material sampled in the Los Villares multilayer archaeological monument (Spain). The analysis of available data on the geomagnetic field variation in Spain over the last seven millennia shows that it is similar to the geomagnetic variation pattern observed in other Eurasian regions. The amplitude of the “fundamental” (8000-yr) oscillation (≈20 μT) estimated from the Spain data exceeds significantly its amplitudes in other regions, which supports the previously noted tendency to a westward increase in the amplitude of the fundamental oscillation.  相似文献   

5.
Archaeomagnetism in Greece has continuously developed during the last decades. Numerous studies have provided high quality data and accurate secular variation curves for the direction and intensity of the geomagnetic field have been constructed. The Greek Secular Variation Curves (SVCs) cover the last 8 millennia for intensity and 6 millennia for direction. The coverage of the archaeological periods remains uneven, with several gaps, mostly in the directional dataset, with only two results for periods older than 2500 B.C. In the present contribution, the first archaeomagnetic results from Neolithic settlements in northern Greece are presented. For the present study, samples were collected from three different archaeological sites: burnt structures in Avgi (Kastoria) and Vasili (Farsala) and one oven from Sosandra (Aridaia). The natural remanent magnetization (NRM) grouping of all specimens indicated that the majority of the samples were burnt in situ, providing thus a reliable direction of the ancient field. Magnetic cleaning (both alternating-field and thermal) revealed the presence of one stable component of magnetisation. Rock magnetic experiments (acquisition of isothermal remanent magnetization (IRM), thermal demagnetisation of the IRM, thermomagnetic curves) have been performed on pilot samples indicating that low coercivity magnetic minerals such as magnetite or Timagnetite are prevailing. The mean directions (declination D, inclination I and parameters of the Fisherian statistics), which arose from the three sites are as follows: Sosandra: D = 343°, I = 55.6°, ??95 = 4.8°; Avgi: D = 10.1°, I = 53.4°, ??95 = 4.2° and Vasili: D = 357.5°, I = 43.1°, ??95 = 4.1°. The obtained data are in a very good agreement with results from Neolithic Bulgaria. This study represents the beginning of an effort to fill the gaps of the Greek secular variation curves and their extension to the Neolithic period.  相似文献   

6.
The magnetization of ceramics from the eastern Mediterranean dated within a short period (mostly shorter than ±20 years) has been studied, which made it possible to specify the geomagnetic field variations on the time interval 5th–3rd centuries BC. The 11-year time series of the geomagnetic field strength values has been constructed. The field strength changes have been considered, which indicated that the centennial variation with a characteristic time of ~130 years (according to the obtained data) is observed on this time interval as well as during the last two millennia. The ceramic material from the Mayskaya Gora archeological site (Taman), the preparation succession of which was established based on the shape of pottery but the problem of absolute dating was not solved, has been dated.  相似文献   

7.
Directional secular variation of the geomagnetic field over the last 2000 years has been defined in western Europe from numerous archeomagnetic studies. However, the number of archeomagnetic results for older periods is much more limited. For this reason, we present new data obtained from fired archeological structures found in two French sites (Loupiac and Aspiran) dated within the first millennium b.c. (latest Bronze-earliest Iron Age transition, ∼850-700 b.c. and Iron Age, ∼525-475 b.c., respectively). From a compilation of archeomagnetic results from western Europe (Great Britain, Italy and France) and northern Africa (Tunisia), we propose a directional secular variation curve for western Europe that covers the entire first millennium b.c. This curve exhibits a large clockwise motion with rapid changes during the first half of the millennium, while the last four centuries b.c. are characterized by weak variations.  相似文献   

8.
We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31–43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285–376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247–3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800–2600 BC.  相似文献   

9.
The knowledge about past secular variations of the geomagnetic field is achieved on the basis of archaeomagnetic researches of which the Bulgarian studies form an extended data set. In Part I (Kovacheva and Toshkov, 1994), the methodology used in the Sofia palaeomagnetic laboratory was described and the secular variation curves for the last 2000 years were shown. In Part II (this paper), the basic characteristics of the prehistoric materials used in the archaeomagnetic studies are emphasised, particularly in the context of the rock magnetic studies used in connection with palaeointensity determinations. The results of magnetic anisotropy studies of the prehistoric ovens and other fired structures are summarised, including the anisotropy correction of the palaeointensity results for prehistoric materials, different from bricks and pottery. Curves of the direction and intensity of the geomagnetic field during the last 8000 years in Bulgaria are given. The available directional and intensity values have been used to calculate the variation curve of the virtual dipole moment (VDM) for the last 8000 years based on different time interval averages. The path of virtual geomagnetic pole (VGP) positions is discussed.  相似文献   

10.
The SCHA.DI.00 directional model for the geomagnetic field in Europe for the last 2000 years (Pavón–Carrasco et al., 2008) has been updated by modelling the palaeointensity. This model, SCHA.DI.00, was developed from available Bayesian European Palaeosecular Variation Curves using the regional Spherical Cap Harmonic Analysis technique. The comparison of the palaeosecular variation curves, given by the regional model, with available archaeomagnetic data not used in its development showed an improvement with respect to the fit obtained by global archaeomagnetic models. In this paper advantage is taken of recently published palaeointensity databases to develop a complete (direction and intensity) regional archaeomagnetic model for the last 2000 years valid for the European region: the SCHA.DI.00–F model. Not only does this complete model provide an improvement for example for archaeomagnetic data studies, but it is also shown that this new regional model can be used to study the recently proposed link between the centennial secular variation of the geomagnetic field and climate change. The pattern of the archaeosecular variation of the field intensity obtained by SCHA.DI.00–F seems to verify the hypothesis presented by Gallet et al. (2005) about a possible (causal) connection between changes in the geomagnetic field intensity and in climate parameters, opening the door for more discussions on this challenging subject.  相似文献   

11.
This paper shows how 226Ra–230Th disequilibria can be used to date Holocene volcanic rocks from some well selected volcanoes. A systematic study of these disequilibria on historical or well-dated volcanic samples is indeed first required to test the applicability of this method. Two examples are described here to illustrate its potential. In the case of Mt. Etna, the good correlation observed between (226Ra)0 activities at the time of eruption and Th contents in lava flows from the last two millennia [M. Condomines, J.C. Tanguy, V. Michaud, Magma dynamics at Mt. Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas, Earth Planet. Sci. Lett. 132 (1995) 25–41] is used to infer the ages of several newly analysed lava flows. The calculated ages are in good agreement with those deduced from the archaeomagnetic curve describing the variation of the geomagnetic field direction in southern Italy [J.C. Tanguy, I. Bucur, J.F.C. Thompson, Geomagnetic secular variation in Sicily and revised ages of historic lavas from Mt. Etna, Nature 318 (1985) 453–455, J.C. Tanguy, M. Le Goff, V. Chillemi, A. Paiotti, C. Principe, S. La Delfa, G. Patane, Variation séculaire de la direction du champ géomagnétique enregistrée par les laves de l'Etna et du Vésuve pendant les deux derniers millénaires, C. R. Acad. Sci. Paris 329 (1999) 557–564, J.C. Tanguy, M. Le Goff, C. Principe, S. Arrighi, V. Chillemi, A. Paiotti, S. La Delfa, G. Patane, Archaeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet. Sci. Lett. 211 (2003) 111–124]. We also present a whole set of new U-series data on historical, recent, and older samples from Merapi (Indonesia), and show that the (226Ra)/Ba ratio has probably maintained a quasi-steady state value during at least the past four millennia, and can be used to infer the (226Ra)0/Ba ratio of old volcanics at the time of eruption, and thus their ages. Comparison with 14C ages available on three samples [R. Gertisser, J. Keller, Temporal variations in magma composition at Merapi volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity, J. Volcanol. Geotherm. Res. 123 (2003) 1–23] shows an excellent agreement. These dating methods, based on the post-eruptive decrease of 226Ra excesses can be confidently used to date young rocks on both volcanoes, an important step to infer their recent eruptive history and magmatic evolution. It also opens the possibility to extend the geomagnetic field variation curve back into the past few millennia. The promising results obtained in this work should encourage new systematic U-series studies to test the applicability of such methods to other permanently active volcanoes showing 226Ra excesses.  相似文献   

12.
This paper presents a Bayesian approach for fitting the standard power-law rating curve model to a set of stage-discharge measurements. Methods for eliciting both regional and at-site prior information, and issues concerning the determination of prior forms, are discussed. An efficient MCMC algorithm for the specific problem is derived. The appropriateness of the proposed method is demonstrated by applying the model to both simulated and real-life data. However, some problems came to light in the applications, and these are discussed.  相似文献   

13.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   

14.
We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a “treatment” effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.  相似文献   

15.
The magnetization of ceramic material manufactured in the eastern Mediterranean is studied. Data on the variation in geomagnetic field intensity in the time interval from the fourth-quarter of the 6th century BC through the 2nd century AD are obtained. The main tendency of the variation in the field intensity until approximately the middle of this interval is its decrease, after which the average intensity level varied insignificantly over the three next centuries. Variations with characteristic times of a few tens to a few hundreds of years are superimposed on the smooth variation in the field intensity approximated by a sinusoid with a period of 1600 yr. The data obtained in this work confirm the previously derived conclusion that short-term intensity variations have been permanently present in the geomagnetic field in the recent millennia.  相似文献   

16.
1950-1985年中国地磁长期变化的模型和分析   总被引:3,自引:2,他引:3       下载免费PDF全文
对1950年以来中国及其邻近地区的地磁观测台和复测点地磁三分量数据进行了系统地分析,求得这期间每5年的共7组地磁长期变化的模型(SV模型).利用这些SV模型将需要的地磁观测值归算到所需的年代,很好地建立了1950-1985年中国地区的主磁场模型.文中还表示了中国地区1950年以来地磁各分量地磁长期变化的时空变化趋势.这些SV模型系数和国际参考地磁场系数计算的SV值与相应观测的SV值比较,由中国SV模型系数得到的均方值比国际参考场的小.  相似文献   

17.
A Bayesian probabilistic approach for damage detection has been proposed for the continuous monitoring of civil structures (Sohn H, Law KH. Bayesian probabilistic approach for structure damage detection. Earthquake Engineering and Structural Dynamics 1997; 26 :1259–1281). This paper describes the application of the Bayesian approach to predict the location of plastic hinge deformation using the experimental data obtained from the vibration tests of a reinforced‐concrete bridge column. The column was statically pushed incrementally with lateral displacements until a plastic hinge is fully formed at the bottom portion of the column. Vibration tests were performed at different damage stages. The proposed damage detection method was able to locate the damaged region using a simplified analytical model and the modal parameters estimated from the vibration tests, although (1) only the first bending and first torsional modes were estimated from the experimental test data, (2) the locations where the accelerations were measured did not coincide with the degrees of freedom of the analytical model, and (3) there existed discrepancies between the undamaged test structure and the analytical model. The Bayesian framework was able to systematically update the damage probabilities when new test data became available. Better diagnosis was obtained by employing multiple data sets than just by using each test data set separately. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding the geological uncertainty of hydrostratigraphic models is important for risk assessment in hydrogeology. An important feature of sedimentary deposits is the directional ordering of hydrostratigraphic units (HSU). Geostatistical simulation methods propose efficient algorithm for assessing HSU uncertainty. Among different geostatistical methods to simulate categorical data, Bayesian maximum entropy method (BME) and its simplified version Markov-type categorical prediction (MCP) present interesting features. In particular, the zero-forcing property of BME and MCP can provide a valuable constrain on directional properties. We illustrate the ability of MCP to simulate vertically ordered units. A regional hydrostratigraphic system with 11 HSU and different abundances is used. The transitional deterministic model of this system presents lateral variations and vertical ordering. The set of 66 (11 × 12/2) bivariate probability functions is directly calculated on the deterministic model with fast Fourier transform. Despite the trends present in the deterministic model, MCP is unbiased for the HSU proportions in the non-conditional case. In the conditional cases, MCP proved robust to datasets over-representing some HSU. The inter-realizations variability is shown to closely follow the amount and quality of data provided. Our results with different conditioning datasets show that MCP replicates adequately the directional units arrangement. Thus, MCP appears to be a practical method for generating stochastic models in a 3D hydrostratigraphic context.  相似文献   

19.
Following the European Water Framework Directive (2000/60/EC), the authors proposed, in a previous contribution, a Marine Biotic Coefficient (BC) to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. The present study examines the application of the BC to the Atlantic (North Sea; Bay of Biscay; South of Spain) and Mediterranean (Spain and Greece) European coasts. The investigation assesses also the usefulness of the BC, in relation to different impact sources (e.g. drilling cuts with ester-based mud, submarine outfalls, heavy metals, industrial and mining wastes, jetties and sewerage works). The results obtained are consistent with those obtained using several methods and parameters, such as richness, diversity, evenness, Abundance-Biomass comparison plots and univariate and multivariate statistical analyses. The BC values provide a simple and clearly defined way to establish the ecological quality of soft-bottom benthos, complementary to the above mentioned methods.  相似文献   

20.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号