首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic activity of galena, pyrite and Co3S4 for oxygen reduction has been studied by potentiostatic methods. Open circuit potentials of the sulphide electrodes have also been measured as a function of pH in nitrogen, air and oxygen atmospheres and also in the presence of H2O2 and ethyl xanthate. The adsorption of xanthate on sulphides was followed by observing bubble attachment to the electrodes.The catalytic activity for oxygen (or H2O2) reduction (the cathodic currents), the electrode potentials and the xanthate adsorption as shown by bubble attachment within certain pH limits, all varied as Co3S4 > pyrite (≈ PbS in H2O2) ? PbS indicating considerable dependence of the redox processes in flotation on the d - electron character of the sulphides.In the absence of oxygen, xanthate is probably bonded to the water structure of the surface through hydrogen-bonding, thus keeping the surface hydrophilic. Such adsorption reduces the electrode potential and inhibits oxygen reduction.  相似文献   

2.
Alkyl xanthyl thiosulphates (R.OCSS.S2O3?) (RXT?) are formed in solution by mild oxidation (e.g. by I2) of solutions containing both xanthate and thiosulphate. They can also be formed by reaction of Cu2+ with xanthate and thiosulphate, reaction of dixanthogen with thiosulphate, and by reaction of xanthate with tetrathionate; these last three reactions can occur in flotation pulps in slightly acid or alkaline solutions (pH 5–10).Alkyl xanthyl thiosulphates are stable in acid and neutral solution; the solutions have a UV absorption maximum at 289 nm. In strongly alkaline solution (pH 12) RXT? decomposes within a few minutes to yield a xanthate (mostly) plus a little perxanthate. At pH 10 this decomposition to xanthate takes about 48 h. At pH 7–9 RXT? is relatively stable. RXT? is not extracted from aqueous solution with common solvents (chloroform, iso-octane, cyclohexane, or ether). It forms a water-insoluble adduct with cetyltrimethyl-ammonium bromide (CTAB); this adduct can be extracted into chloroform, and the extract has a UV absorption maximum at 296 nm.RXT? was found in solutions from the gangue-sulphide flotation section at Renison Ltd, the zinc flotation circuit and the copper flotation circuit at Mount Isa Mines Ltd, and the lead flotation section of The Zinc Corporation Ltd. The presence of RXT? in operating flotation plants has various practical and theoretical implications.  相似文献   

3.
Extensive thermodynamic calculations have been carried out to study the oxidation of galena and its flotation by potassium ethyl xanthate (KEX). In order to include some kinetic effects, three cases have been considered by assuming that sulfur oxidation can proceed as far as the formation of sulfate, thiosulfate and elemental sulfur.The results of these calculations have been compared with those of linear sweep voltammetry and intermittent galvanostatic polarization experiments conducted on galena at pH 9.2. Analysis of the experimental data indicates that in xanthate-free solutions, galena is oxidized primarily to PbO and S0 and, to a lesser extent, S2O32−, rather than to the thermodynamically most favored PbOH+ and SO42−. Tests carried out in the presence of collector confirm the previous finding (Woods, 1971) that the interaction of xanthate with the mineral begins with chemisorption by a one-electron reaction. This cannot, of course, be predicted by calculations based on bulk thermodynamics.  相似文献   

4.
Alkyl dixanthogens, (ROCSS)2, decompose in aqueous solution in the presence of nucleophiles in many ways.It is proposed here that in alkaline solution the principal methods of decomposition of ethyl dixanthogen are by simultaneous attack of OH? ions on the sulphur-sulphur bond to give products which include xanthate ion (ROCSS?) and peroxide (H2O2) and on the carbon-sulphur bond to give products which include monothiocarbonate ion (ROSCO?), sulphide ion (S2?), and sulphur (S0). Above pH 12 reaction is complete in a few minutes, and more monothiocarbonate than xanthate is formed. At pH 9 the reaction takes over 20 h and more xanthate than monothiocarbonate is formed.The primary products react further to give various ions which depend in part on the pH of the system. In alkaline solution some of the xanthate and peroxide react to give perxanthate (ROCSSO?). In acid solution both xanthate and monothiocarbonate decompose rapidly; CS2 is formed from xanthate and OCS from monothiocarbonate.In the presence of other nucleophiles at pH 9.2, dissolved dixanthogen decomposes much more quickly than with OH? alone, and other reactions occur. With thiosulphate a higher proportion of xanthate is formed together with some xanthyl thiosulphate and monothiocarbonate but no perxanthate. With sulphite (in the absence of oxygen) or cyanide the products include xanthate and monothiocarbonate but no perxanthate. With sulphite in the presence of oxygen, perxanthate is also formed.Suspensions of dixanthogens react slowly but in a similar fashion to dissolved dixanthogens.Longer-chain dixanthogens are much less soluble than ethyl dixanthogen but, in general, react in a similar way. Higher temperatures increase the rate of decomposition by OH?.This work has various implications in operating plants.  相似文献   

5.
The oxidation of ethyl xanthate on pyrite electrodes, and the influence of the flotation depressants hydroxide, cyanide, and sulphide, have been investigated using cyclic voltammetry. A layer of a hydrated iron oxide has been identified on pyrite surfaces. Xanthate does not interact with this layer but is oxidized to dixanthogen at positive potentials. An increase in pH results in an increase in the background current due to oxidation of the mineral, and at pH=11 this reaction becomes faster than xanthate oxidation. Cyanide interacts with the electrode to form a surface species which inhibits xanthate oxidation. Sulphide gives rise to an anodic wave preceding the wave due to xanthate oxidation. The flotation and depression of pyrite are interpreted in terms of mixed-potential mechanisms.  相似文献   

6.
The rate of decomposition of potassium ethyl monothiocarbonate has been determined at pH values between 5 and 10, and its molar absorptivity at 221 nm determined to be 1.24 · 104mol/cm.A novel apparatus for use in the study of reactions between sulphide minerals, oxygen and thiol reagents has been developed, and applied to the reactions of potassium ethyl xanthate with galena and pyrite. It has been shown that both minerals react with ethyl xanthate in the presence of oxygen or oxidation products to form soluble as well as adsorbed xanthate derivatives. The soluble derivative has been identified to be ethyl monothiocarbonate. The adsorbed xanthate at a galena surface, unlike that at a pyrite surface, is gradually converted to a soluble monothiocarbonate under the action of dissolved oxygen. The effect of variables such as pH, the initial xanthate and oxygen concentrations, and the initial state of oxidation of the mineral on the formation of monothiocarbonate has been studied. It is tentatively proposed that an intermediate adsorbed mixed xanthate-hydroxide species is involved in the formation of monothiocarbonate at both galena and pyrite surfaces.The significance of the formation of monothiocarbonate to flotation practice is discussed briefly. The formation of monothiocarbonate represents a wastage of reagent, and could lead to a decrease in flotability of xanthated galena with time of exposure to aerated solutions.  相似文献   

7.
Germanium concentrations in geothermal waters in Iceland lie mostly in the range 2–30 ppb. There is an overall positive relation between the germanium content of the water and its temperature. Most of the germanium occurs as Ge(OH)?5in solution but Ge(OH)4 may also be present in significant amounts in saline waters when above 200°C. Evidence indicates that aqueous germanium concentrations are controlled by exchange reactions where it substitutes for silica in silicates and iron in sulphides. It is the rate of dissolution and the relative abundance of the alteration minerals which take up germanium to a variable extent that ultimately fix Ge(OH)4 concentrations in the water. This, together with water pH, fixes total dissolved germanium. It is mostly the primary rock composition that dictates the relative abundance of the alteration minerals. Conductive cooling in upflow zones favours removal of germanium from solution. During the initial stages of boiling of rising hot water dissolution is enhanced but precipitation at later stages.Thermodynamic data of various aqueous germanium species and several minerals are summarized and dissociation constants and solubilities estimated at elevated temperatures using available predictive methods.  相似文献   

8.
Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Hallimond tube flotation and microelectrophoresis have been utilized to investigate the reactions in the adsorption-abstraction of K-amylxanthate on finely ground galena. The mineral was ground in a laboratory stainless steel rod mill under controlled conditions (pH 4.0 and 7.0) using HCl as a pH regulator. X-ray photoelectron spectroscopic (XPS) studies have been carried out in order to characterize the surface oxidation products after grinding (weak amounts of Sn and PbS2O3). The two-stage adsorption process discovered in previous studies was confirmed. For low concentrations or submonolayer capacity, the layer is formed with 1:1 monocoordinated lead xanthate and dixanthogen. For higher values of surface coverage, it is composed of lead xanthate (stoichiometric at pH 7 and non-stoichiometric at pH 4), amyldixanthogen and amylcarbonate disulphide. In the second stage mainly dixanthogen is formed. This stage corresponds to complete flotation and to a sharp decrease in zeta potentials.  相似文献   

9.
The aim of this paper is to find an effective method for the separation of the undesirable constituents, namely, chalcopyrite and arsenopyrite from pyrite used for the production of H2SO4. A new effective method is developed for co-depressing chalcopyrite with arsenopyrite by AsI3, followed by the addition of magnesia mixture. This method has been shown to be based on the fact that iron sites exist in the three minerals, whereas copper and arsenic sites exist only in chalcopyrite and arsenopyrite, respectively. This is coupled with the ability of both Cu(I) and Cu(II) to precipitate As(III) in the form of insoluble copper arsenides, namely Cu3As, Cu3As2. In contrast, neither Fe(II) nor Fe(III) form stable arsenides. Consequently, As3+ ions are selectively adsorbed onto the surface of chalcopyrite. The facility for oxidizability of As(III) is well known and hence it adsorbs oxygen from the pulp and changes to As(V) of higher valency and smaller size, with ionic potential over 10. Accordingly, it yields a stable complex anion with covalent bonding, namely, [AsO4]3?. These newly created arsenate sites on the surface of chalcopyrite, as well as the corresponding original arsenate sites on the surface of arsenopyrite combine with magnesia mixture to form cations leading to the formation of tightly abutting strongly hydrophilic layers of … AsO4NH4Mg.6H2O. The spread of this hydrophilic film on arsenopyrite and chalcopyrite surfaces leads to the screening of their surfaces, making them difficult of access for the collector, ethyl xanthate. Since the pKa of xanthic acid occurs at pH below 3, xanthate species predominate at pH above 8 and are adsorbed selectively on the pyrite surface in sufficient quantity for its selective flotation and hence for its separation to take place in the pH range 8–9.  相似文献   

10.
The results obtained from measurements of potassium ethyl xanthate (EtXK) sorption by synthetic chalcocite (Cu2S) and the results of chalcocite floatability measurements are presented.Five chalcocite samples, denoted as Cu2S A, B, C, D and E, were used for the measurements. Chalcocite samples of 60–75 μm were prepared in the same manner but were kept under conditions which differed in their degree to prevent surface oxidation by atmospheric oxygen.Chalcocite surface oxidation has a strong effect both on xanthate sorption and on chalcocite floatability. The maximal amount of xanthate abstracted (Qmax) by chalcocite samples from deoxygenated solutions after a long sorption period increases with increasing oxidation of the samples. The Qmax values give information concerning the total amount of surface oxidation products.Chalcocite decreases its floatability with increasing surface oxidation. Most oxidized chalcocite samples required an about 100 times greater collector consumption to obtain the same flotation results than the least-oxidized samples studied.  相似文献   

11.
A laboratory study of the batch flotation of chalcocite from chalcocite-quartz mixtures and of cuprite from cuprite-quartz mixtures with potassium ethyl xanthate as collector has shown that the oxidation-reduction state of the flotation pulp can have a pronounced influence on mineral floatabilities. At pH 11 chalcocite floated over a relatively narrow Eh range of about 300 mV; pH had no influence on the potential of the lower flotation boundary in reducing conditions but had a significant effect on the potential of the upper boundary in oxidizing conditions. Below this upper limit, the floatability was reversible with respect to Eh. Provided the Eh was in correct region chalcocite could be floated in the absence of measurable concentrations of dissolved oxygen.Cuprite displayed a high level of floatability with ethyl xanthate for which, by contrast with chalcocite, no flotation limit in reducing conditions was found; over a small range of potentials close to zero, its behaviour was strongly pH dependent.An attempt to account for the floatabilities of chalcocite and cuprite in terms of the formation of cuprous ethyl xanthate on their surfaces did not lead to correlations with the observed behaviour in reducing conditions but provided a rough correlation with the upper flotation potential limit. It is believed that more detailed and properly controlled comparative flotation studies of the chalcocite-xanthate and cuprite-xanthate systems could help to resolve some of the uncertainties associated with the effects of Eh, pH and oxygen concentration in sulphide mineral flotation.  相似文献   

12.
The role of pH and pulp redox potential (EH) to control the flotation and depression of arsenopyrite has been investigated through studies on microflotation of arsenopyrite crystals and batch flotation of an arsenopyritic ore using isopropyl xanthate as collector. The transition between flotation and depression of arsenopyrite is established by the reversible potential of the xanthate/dixanthogen couple. Adsorption of arsenate ions on ferric hydroxide has been studied through electrokinetics to delineate mechanisms involved in the depression of arsenopyrite using oxidants. Chemical binding between arsenate species and ferric hydroxide sites on arsenopyrite is suggested as the mechanism responsible for depression of arsenopyrite. EH conditions are given for the flotation and depression of arsenopyite at various pH values for the arsenopyritic ore.  相似文献   

13.
Flotation of sphalerite with ethyl, propyl, butyl, amyl, and hexyl xanthate is presented as a function of pH and concentration. Surface species have been identified with infrared spectroscopy and correlated with flotation and electrophoretic results. Flotation is postulated to be controlled by the formation and adsorption of bulk precipitated zinc xanthate on the alkyl chains of chemisorbed collector species.  相似文献   

14.
On the basis of thermodynamic calculations, diagrams of metastable electrochemical equilibria of the system copper-potassium ethylxanthate-water, at 25°C were constructed. The equilibria equations and diagrams for the total activity of [EtX?] + [HEtX] + 2 [(EtX)2] (equalling 10?1, 10?4 and 10?7 mol/dm3), are presented. The practical conclusions resulting from these diagrams for the flotation of native copper are discussed.  相似文献   

15.
With the increasing application of germanium (Ge) elements in modern industry, military and medical health industries, especially with the growing demand for Ge-rich agricultural products, the study of Ge-rich soil has become particularly important, but the enrichment pattern and control factors of Ge-rich soil are still not well understood due to the high dispersion and high migration of Ge-rich soil. In this paper, 495 surface soil (0–20 cm) and 149 deep soil (150–200 cm) samples were collected from the northern foothills of Dabie Mountain using a double-layer grid layout, and the spatial distribution and enrichment characteristics of Ge were studied by high-resolution method, and the controlling factors affecting the distribution of Ge-rich soil was analyzed by geo-statistics and spatial analogy. The results show an average Ge content of 1.34 mg/kg for the surface and 1.36 mg/kg for the deep soil. In the assessment grade classification of surface and deep soil for Ge, the abundant and sub-abundant grades account for 37.97% and 31.70%, respectively, covering 752 km2 and 634 km2. Surface Ge-rich regions are distributed in concentrated strips in the north-central part of the studied region, and there is no clear pattern in the spatial distribution of deep soils. In the areas under study, such as Fenlukou, Dingji, and Jiangjiadian, the surface soil is very rich in Ge and has a high enrichment factor, which is valuable for agricultural development. In surface soils, river deposits and shallow metamorphic rock parent materials have the highest content of Ge, while in deep soils, the highest content has been found in the parent material of moderately acidic rock. Both surface and deep soils have the highest Ge content in purple paddy soils and plain areas. The source of Ge in the soils of the study area is most influenced by the lithology of the soil-forming parent material, while the distribution of Ge in the surface soils is jointly influenced by pH, SiO2, TFe2O3, and Al2O3 in the soil. This study has implications for understanding the enrichment pattern of Ge in soil and its controlling factors as well as for the development of Ge-rich agricultural products.  相似文献   

16.
道地药材生长与生态地球化学研究对实现中医药科学化和标准化具有重要意义。从承德市滦河流域与金沟屯和五道岭典型研究区阐明区域尺度和不同地质建造区Ge元素地球化学背景特征,结合多元统计采用基于Nb元素的质量迁移系数、化学蚀变指数CIA和残积系数RF、生物富集系数论述Ge元素在基岩-风化壳-土壤-黄芩系统中的迁移聚集规律,探讨Ge元素生态地球化学特征与道地药材黄芩的适生关系。结果表明:滦河流域表层土壤Ge元素平均含量为1.336 mg·kg-1,43.54%土壤样品Ge元素含量属丰富—较丰富水平;金沟屯和五道岭区表层土壤Ge元素平均含量分别为1.352 mg·kg-1和1.268 mg·kg-1。不同地质建造和表层土壤Ge元素含量与TFe2O3含量显著相关,土壤含铁矿物对Ge元素具有吸附作用。Ge元素含量随岩土风化程度升高而增大,金沟屯区土壤风化程度高于五道岭区,土壤成熟度相对较高,Ge元素富集程度相对较高。岩石风化过程中Ge元素与TFe2O3、V、Ti、Co、P、Pb、Cu、Zn、Al2O3、SiO2、K2O、Na2O质量迁移系数值相近,风化土壤与新鲜基岩Si和Ge含量发生明显分异,Ge元素主要来源于硅酸盐矿物风化过程中晶格破裂和金属硫化物矿物风化释放。金沟屯和五道岭黄芩Ge元素BCF平均值分别为0.014和0.020,黄芩根部对土壤Fe与Ge的吸收表现出明显的协同作用,土壤pH影响着Ge元素形态和生物有效性。区域土壤丰富的Fe、P和Sr元素含量为优质黄芩生长提供了有利条件;Fe族元素含量丰富,pH呈微碱性的沙壤质土壤为道地药材黄芩适宜生长和定向栽培种植区。  相似文献   

17.
The Ba2+ ion adsorption isotherms on β-MnO2 were of the Langmuir type. The endothermic heat of adsorption (40 kJ mol?1) is ascribed to entropy contributions associated with the Na+Ba2+ ion-exchange mechanism. The Ba2+ ion adsorption density was higher at pH 10 than that at pH 7, due to the more negative surface charge at the higher pH. Ba2+ ions were found to reverse the sign of the ζ potential of the MnO2 particles.More oleate was adsorbed by β-MnO2 in the presence of Ba2+ ions than in their absence. The oleate adsorption isotherms on Ba2+-activated MnO2 were of the Freundlich type and indicated an exothermic process. Hallimond flotation recovery of Ba2+-activated MnO2 was higher at pH 10 than at pH 7, although less oleate was adsorbed at the higher pH. At pH 7, Mn2+-activation led to higher recoveries than Ba2+-activation. It seems that the attraction between the surface and the activator plays an important rôle in determining the flotation recovery.  相似文献   

18.
Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10−7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m2. The percentage of adsorbed Ge increases with pH at pH < 9, reaches a maximum at pH ∼ 9 and slightly decreases when pH is further increased to 11. These results allowed generation of a 2-pK Surface Complexation Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, and , at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe)solid = k × (Ge/Fe)solution with 0.7 ? k ? 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (<1 day) having intermediate Ge/Fe ratios (0.01-0.1) show 4 ± 0.3 oxygen atoms at 1.76 ± 0.01 Å around Ge. Samples less concentrated in Ge (0.001 < Ge/Fe < 0.10) and aged longer times in solution (up to 280 days) exhibit a splitting of the first atomic shell with Ge in both tetrahedral (R = 1.77 ± 0.02 Å) and octahedral (R = 1.92 ± 0.03 Å) coordination with oxygen. In these samples, octahedrally coordinated Ge accounts for up to ∼20% of the total Ge. For the least concentrated samples (Ge/Fe < 0.001-0.0001) containing lepidocrocite, 30-50% of total co-precipitated germanium substitutes for Fe in octahedral sites with the next-nearest environment dominated by edge-sharing GeO6-FeO6 linkages (RGe-Fe ∼ 3.06 Å). It follows from the results of our study that the largest structural change of Ge (from tetrahedral to octahedral environment) occurs during its coprecipitation with Fe hydroxide at Ge/Fe molar ratio ?0.0001. These conditions are likely to be met in many superficial aquatic environments at the contact of anoxic groundwaters with surficial oxygenated solutions. Adsorption and coprecipitation of Ge with solid Fe oxy(hydr)oxides and organo-mineral colloids and its consequence for Ge/Si fractionation and Ge geochemical cycle are discussed.  相似文献   

19.
The results of potassium ethyl xanthate (EtXK) consumption measurements by synthetic chalcocite (Cu2S grain-sized classes of 60–75 μm and 120–200 μm, respectively) are presented. These measurements were done in a modified circulation apparatus in an argon or oxygen atmosphere at pH=9.5. The experimental results were compared with theoretical results predicted by a mathematical model based on the assumption that the EtX? ions were immobilized as a result of a chemical reaction (or reactions), e.g., of an ion-exchange type, taking place within the oxidation product layer (OPL), formed on the Cu2S surface.The experimental and theoretical results are in good agreement especially for small values of Q0 (Q0 is the initial mass of the EtX? in solution per mass unit of Cu2S). In this case both the theoretical and experimental results show that the EtX? concentration in solution decays exponentially with time.  相似文献   

20.
The adsorption of ethyl, propyl and butyl xanthates on pyrite has been studied through electrokinetics, batch adsorption tests, and quantification of Fe2+ ions in solution. Adsorption isotherms for the three alkyl xanthates indicate that their adsorption to dixanthogen produces Fe2+ ions in solution and decreases the pyrite zeta potential negatively. It seems that the oxidation reaction of xanthates to dixanthogen on pyrite is coupled with the reduction reaction of surface-ferric hydroxide to ferrous ions, leading to the dissolution of hydrophilic ferric hydroxide and growth of hydrophobic dixanthogen on the surface of pyrite. Flotation of pyrite is presented as a function of pH using various ethyl xanthate concentrations. The floatability results are explained in terms of the surface coverage relationship between ferric hydroxide and dixanthogen, which is pH dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号