首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmosphere-ocean interaction, particular the ocean response to strong atmospheric forcing, is a fundamental component of the Madden-Julian Oscillation (MJO). In this paper, we examine how model errors in previous Madden-Julian Oscillation (MJO) events can affect the simulation of subsequent MJO events due to increased errors that develop in the upper-ocean before the MJO initiation stage. Two fully coupled numerical simulations with 45-km and 27-km horizontal resolutions were integrated for a two-month period from November to December 2011 using the Navy’s limited area Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). There are three MJO events that occurred subsequently in early November, mid-November, and mid-December during the simulations. The 45-km simulation shows an excessive warming of the SSTs during the suppressed phase that occurs before the initiation of the second MJO event due to erroneously strong surface net heat fluxes. The simulated second MJO event stalls over the Maritime Continent which prevents the recovery of the deep mixed layer and associated barrier layer. Cross-wavelet analysis of solar radiation and SSTs reveals that the diurnal warming is absent during the second suppressed phase after the second MJO event. The mixed layer heat budget indicates that the cooling is primarily caused by horizontal advection associated with the stalling of the second MJO event and the cool SSTs fail to initiate the third MJO event. When the horizontal resolution is increased to 27-km, three MJOs are simulated and compare well with observations on multi-month timescales. The higher-resolution simulation of the second MJO event and more-realistic upper-ocean response promote the onset of the third MJO event. Simulations performed with analyzed SSTs indicate that the stalling of the second MJO in the 45-km run is a robust feature, regardless of ocean forcing, while the diurnal cycle analysis indicates that both 45-km and 27-km ocean resolutions respond realistically when provided with realistic atmospheric forcing. Thus, the problem in the 45-km simulation appears to originate in the atmosphere. Additional simulations show that while the details of the simulations are sensitive to small changes in the initial integration time, the large differences between the 45-km and 27-km runs during the suppressed phase in early December are robust.  相似文献   

2.
Observational evidence suggests a link between the summer Madden Julian Oscillation (MJO) and anomalous convection over West Africa. This link is further studied with the help of the LMDZ atmospheric general circulation model. The approach is based on nudging the model towards the reanalysis in the Asian monsoon region. The simulation successfully captures the convection associated with the summer MJO in the nudging region. Outside this region the model is free to evolve. Over West Africa it simulates convection anomalies that are similar in magnitude, structure, and timing to the observed ones. In accordance with the observations, the simulation shows that 15–20?days after the maximum increase (decrease) of convection in the Indian Ocean there is a significant reduction (increase) in West African convection. The simulation strongly suggests that in addition to the eastward-moving MJO signal, the westward propagation of a convectively coupled equatorial Rossby wave is needed to explain the overall impact of the MJO on convection over West Africa. These results highlight the use of MJO events to potentially predict regional-scale anomalous convection and rainfall spells over West Africa with a time lag of approximately 15–20?days.  相似文献   

3.
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.  相似文献   

4.
国家气候中心MJO监测预测业务产品研发及应用   总被引:2,自引:1,他引:1       下载免费PDF全文
热带大气低频振荡 (MJO) 和北半球夏季季节内振荡 (BSISO) 对全球范围天气气候事件有重要影响,是次季节-季节 (S2S) 预报最主要的可预报性来源之一。国家气候中心 (BCC) 基于我国完全自主的T639全球分析场数据、风云三号气象卫星射出长波辐射 (OLR) 资料以及BCC第2代大气环流模式系统的实时预报,发展了MJO实时监测预测一体化业务技术,建立了ISV/MJO监测预测业务系统 (IMPRESS1.0),已投入实时业务运行,在全国气象业务系统得到应用。该文着重介绍该系统提供的MJO和BSISO指数监测预测数据和图形产品,并描述了这些业务产品在2015年对MJO典型个例的实时监测预测应用情况。监测分析和预报检验表明,基于我国自主资料的监测结果能够较为准确地表征MJO和BSISO指数的振荡和演变过程,该系统对MJO和BSISO事件分别至少具备16 d和10 d左右的预报技巧。因此,基于IMPRESS1.0的MJO/BSISO监测预测一体化业务产品可为制作延伸期预报提供重要的参考依据。  相似文献   

5.
The change in Madden–Julian oscillation (MJO) amplitude and variance in response to anthropogenic climate change is assessed in the 1° nominal resolution community climate system model, version 4 (CCSM4), which has a reasonable representation of the MJO characteristics both dynamically and statistically. The twentieth century CCSM4 run is compared with the warmest twenty-first century projection (representative concentration pathway 8.5, or RCP8.5). The last 20 years of each simulation are compared in their MJO characteristics, including spatial variance distributions of winds, precipitation and outgoing longwave radiation, histograms of event amplitude, phase and duration, and composite maps of phases. The RCP8.5 run exhibits increased variance in intraseasonal precipitation, larger-amplitude MJO events, stronger MJO rainfall in the central and eastern tropical Pacific, and a greater frequency of MJO occurrence for phases corresponding to enhanced rainfall in the Indian Ocean sector. These features are consistent with the concept of an increased magnitude for the hydrological cycle under greenhouse warming conditions. Conversely, the number of active MJO days decreases and fewer weak MJO events occur in the future climate state. These results motivate further study of these changes since tropical rainfall variability plays such an important role in the region’s socio-economic well being.  相似文献   

6.
Mechanisms for convective initiation of the Madden–Julian oscillation (MJO) remain poorly understood. During recent years, <50 % of large-scale convectively active episodes over the tropical Indian Ocean have led to MJO initiation. This study explores the structure and evolution of precipitation, diabatic heating, and potential vorticity (PV) that might be used to tell whether an MJO event will be initiated once such a convection episode occurs. Three different cases are studied. As convection becomes active in a large area over the tropical Indian Ocean, early signs favorable for MJO initiation are apparent: a persistent basin-scale coverage in the zonal direction by positive anomalies in precipitation and diabatic heating (in a swallowtail pattern), a persistent vertical dipole of PV generation with cyclonic (anticyclonic) PV generation in the lower (upper) troposphere covering a zonally extended area, and a cyclonic PV anomaly in the midtroposphere with a cyclonic PV pair straddling the equator immediately west of the diabatic heating center. All these signs are robust in the MJO composite but rarely occur all together in a given MJO case. The likelihood of an MJO event following a convective episode over the tropical Indian Ocean depends on how many of these signs occur and how persistent they are. While a preexisting MJO signal is neither a necessary nor a sufficient sign for MJO initiation, an active convective episode over the tropical Indian Ocean is necessary but insufficient for MJO initiation. MJO initiation depends on detailed convective behaviors over the tropical Indian Ocean.  相似文献   

7.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

8.
Observed outgoing longwave radiation (OLR) and ERA-Interim reanalysis data were analyzed to reveal the initiation processes associated with a successive and a primary MJO event during 2000-2001. It was found that the initiation of the successive event was caused by anomalous ascending motion induced by low-level horizontal temperature advection. The anomalous ascending motion, together with horizontal moisture advection, moistened lower troposphere and led to an unstable stratification and triggered convection. The initiation of the primary MJO event, on the other hand, was caused by the accumulation of anomalous moisture associated with three low-frequency modes, a convectively coupled Kelvin wave (CCKW), an westward-propagating equatorial Rossby wave (ER) and a weak planetary-scale MJO mode. It is the merging of the low-level specific humidity anomalies of the three modes that led to the rapid setup of large-scale convectively unstable stratification and favored the development of the eastward-propagating planetary-scale MJO mode.  相似文献   

9.
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.  相似文献   

10.
In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.  相似文献   

11.
利用次季节—季节预报研究计划(Subseasonal to Seasonal Prediction Project, S2S)的多模式产品集,系统评估了产品集中11个模式对MJO的实际预报技巧。如果以距平相关系数ACC为0.5作为有效预报技巧的阈值,S2S各模式的MJO实际预报时效为8~32 d。S2S各模式预报普遍低估了MJO的振幅强度,且预报的MJO传播速度偏慢。通过分析发现,在一个集合预报系统中,集合离散度与均方根误差越接近,它的MJO预报技巧越高。此外,分析S2S各模式MJO预报技巧对起报时间、季节和起报时MJO信号强弱的敏感性发现,当起报时间为冬季且起报时MJO为强信号时,MJO的实际预报技巧较高。  相似文献   

12.
As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circulation, and their variabilities substantially impact the climate in mid-high latitudes. A 35-yr(1979-2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences(CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data. The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM, relation of the NAM to the East Asian climate, and temporal variability of the SAM is examined and validated against the observational data. The results show that CAMS-CSM captures the zonally symmetric and out-of-phase variations of sea level pressure anomaly between the midlatitudes and polar zones in the extratropics of the NH and SH. The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies. Furthermore, the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies. The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia. It also captures the upward trend of the austral summer SAM index during recent decades. However, compared with the observation, the model shows biases in both the intensity and center locations of the NAM's and SAM's horizontal and vertical structures. Specifically, it overestimates their intensities.  相似文献   

13.
用Zebiak-Cane模式和季节内振荡(Madden-Julian Oscillation,MJO)的参数化表述以及条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法,分析了以ENSO事件为基态的CNOP型初始误差的空间结构增长规律。结果表明,参数化的MJO对CNOP型初始误差的发展影响较小,其影响主要是使中东太平洋的海表面温度异常增大。CNOP型初始误差比由MJO不确定性产生的模式误差的影响大,前者可能是造成ENSO事件预报不确定性的主要误差来源。由于CNOP型初始误差的局地性,本结论可用来指导ENSO的目标观测和适应性资料同化。  相似文献   

14.
In recent years,significant progress has been made regarding theories of intraseasonal oscillations (ISOs) (also known as the Madden-Julian oscillation (MJO) in the tropics).This short review introduces the latest advances in ISO theories with an emphasis particularly on theoretical paradigms involving nonlinear dynamics in the following aspects:(1) the basic ideas and limitations of the previous and current theories and hypotheses regarding the MJO,(2) the new multi-scale theory of the MJO based on the intraseasonal planetary equatorial synoptic dynamics (IPESD) framework,and (3) nonlinear dynamics of ISOs in the extratropics based on the resonant triads of Rossby-Haurwitz waves.  相似文献   

15.
The impact of initialization and perturbation methods on the ensemble prediction of the boreal summer intraseasonal oscillation was investigated using 20-year hindcast predictions of a coupled general circulation model. The three perturbation methods used in the present study are the lagged-averaged forecast (LAF) method, the breeding method, and the empirical singular vector (ESV) method. Hindcast experiments were performed with a prediction interval of 10 days for extended boreal summer (May–October) seasons over a 20 year period. The empirical orthogonal function (EOF) eigenvectors of the initial perturbations depend on the individual perturbation method used. The leading EOF eigenvectors of the LAF perturbations exhibit large variances in the extratropics. Bred vectors with a breeding interval of 3 days represent the local unstable mode moving northward and eastward over the Indian and western Pacific region, and the leading EOF modes of the ESV perturbations represent planetary-scale eastward moving perturbations over the tropics. By combining the three perturbation methods, a multi-perturbation (MP) ensemble prediction system for the intraseasonal time scale was constructed, and the effectiveness of the MP prediction system for the Madden and Julian oscillation (MJO) prediction was examined in the present study. The MJO prediction skills of the individual perturbation methods are all similar; however, the MP‐based prediction has a higher level of correlation skill for predicting the real-time multivariate MJO indices compared to those of the other individual perturbation methods. The predictability of the intraseasonal oscillation is sensitive to the MJO amplitude and to the location of the dominant convective anomaly in the initial state. The improvement in the skill of the MP prediction system is more effective during periods of weak MJO activity.  相似文献   

16.
利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。  相似文献   

17.
The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.  相似文献   

18.
MJO prediction in the NCEP Climate Forecast System version 2   总被引:3,自引:0,他引:3  
The Madden–Julian Oscillation (MJO) is the primary mode of tropical intraseasonal climate variability and has significant modulation of global climate variations and attendant societal impacts. Advancing prediction of the MJO using state of the art observational data and modeling systems is thus a necessary goal for improving global intraseasonal climate prediction. MJO prediction is assessed in the NOAA Climate Forecast System version 2 (CFSv2) based on its hindcasts initialized daily for 1999–2010. The analysis focuses on MJO indices taken as the principal components of the two leading EOFs of combined 15°S–15°N average of 200-hPa zonal wind, 850-hPa zonal wind and outgoing longwave radiation at the top of the atmosphere. The CFSv2 has useful MJO prediction skill out to 20 days at which the bivariate anomaly correlation coefficient (ACC) drops to 0.5 and root-mean-square error (RMSE) increases to the level of the prediction with climatology. The prediction skill also shows a seasonal variation with the lowest ACC during the boreal summer and highest ACC during boreal winter. The prediction skills are evaluated according to the target as well as initial phases. Within the lead time of 10 days the ACC is generally greater than 0.8 and RMSE is less than 1 for all initial and target phases. At longer lead time, the model shows lower skills for predicting enhanced convection over the Maritime Continent and from the eastern Pacific to western Indian Ocean. The prediction skills are relatively higher for target phases when enhanced convection is in the central Indian Ocean and the central Pacific. While the MJO prediction skills are improved in CFSv2 compared to its previous version, systematic errors still exist in the CFSv2 in the maintenance and propagation of the MJO including (1) the MJO amplitude in the CFSv2 drops dramatically at the beginning of the prediction and remains weaker than the observed during the target period and (2) the propagation in the CFSv2 is too slow. Reducing these errors will be necessary for further improvement of the MJO prediction.  相似文献   

19.
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.  相似文献   

20.
This study evaluates the ability of four versions BCC (Beijing Climate Center or National Climate Center) models (BCC_AGCM2.1, BCC_AGCM2.2, BCC_CSM1.1 and BCC_CSM1.1m) in simulating the MJO phenomenon using the outputs of the AMIP (Atmospheric Model Intercomparison Project) and historical runs. In general, the models can simulate some major characteristics of the MJO, such as the intensity, the periodicity, the propagation, and the temporal/spatial evolution of the MJO signals in the tropics. There are still some biases between the models and the observation/reanalysis data, such as the overestimated total intraseasonal variability, but underestimated MJO intensity, shorter significant periodicity, and excessive westward propagation. The differences in the ability of simulating the MJO between AMIP and historical experiments are also significant. Compared to the AMIP runs, the total intraseasonal variability is reduced and more realistic, however the ratio between the MJO and its westward counterpart decreases in the historical runs. This unrealistic simulation of the zonal propagation might have been associated with the greater mean precipitation over the Pacific and corresponded to the exaggeration of the South Pacific Convergence Zone structure in precipitation mean state. In contrast to the T42 versions, the improvement of model resolution demonstrate more elaborate topography, but the enhanced westward propagation signals over the Arabia Sea followed. The underestimated (overestimated) MJO variability over eastern Indian Ocean (Pacific) was assumed to be associated with the mean state. Three sets of sensitive experiments using BCC_CSM1.1m turn out to support this argument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号