首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原地面热源对亚洲季风爆发的热力影响   总被引:23,自引:4,他引:23  
利用多年NCEP/NCAR再分析全球逐候平均气象场资料和逐旬感热、潜热资料,对亚洲夏季风爆发期间青藏高原及其邻近地区地面加热场的特征进行分析。着重讨论了高原和邻近地区感热加热对亚洲夏季风爆发的影响,具体分析了高原感热加热对亚洲夏季风推进的影响机制,以及对热带低层西风气流的作用。结果发现,中纬度主原的感热加热所造成的经、纬向热力差异是导致亚洲夏季风爆发的原因。亚洲夏季风建立区域和时间的差异与高原感热加热的区域性有关。高原感热加热在南海夏季风爆发前后对南海地区低层西风所流所起的作用不同,在季风爆发前是加速低层西风,在季风爆发后起削弱西风气流的作用。对亚洲夏季风爆发早年和晚年的感热加热进行了对比分析,发现亚洲夏季风爆发时间的年际变化与热源的年际变化有关。  相似文献   

2.
张盈盈  李忠贤  刘伯奇 《大气科学》2015,39(6):1059-1072
本文基于日本气象厅(JMA)的JRA-25再分析资料,分析了春季青藏高原表面感热加热年际变化的时空特征,及其对印度夏季风爆发过程的影响。EOF分析结果表明,春季高原感热加热的年际变化在高原中西部最为明显,这主要与局地地-气温差的年际变率有关。统计分析表明,当春季高原中西部表面感热偏强(弱)时,印度夏季风爆发偏早(晚),且高原中西部表面感热与ENSO事件无显著相关。春季高原中西部感热能够通过改变印度季风区对流层高层和低层的经向热力结构来影响印度夏季风的爆发时间。当春季高原中西部感热偏强时,造成的上升气流在高原以西的印度季风区北部下沉,通过绝热增暖引起局地对流层中上部的异常暖中心,令印度季风区对流层中上部平均温度经向梯度由冬至夏的季节性反转提早。同时,印度季风区北部的下沉运动能够抑制当地降水,令陆面温度升高,并通过非绝热过程造成对流层低层的异常暖中心,进一步增强了印度季风区的海陆热力对比。在印度季风区以北地区对流层高、低层异常增暖的共同作用下,印度夏季风提前爆发。  相似文献   

3.
亚洲季风区地面感热通量的区域变化特征   总被引:1,自引:0,他引:1  
采用1979-1995年(缺1986、1987、1993)NCEP/NCAR再分析资料中的逐旬感热通量资料,对亚洲季风区地面感热通量的空间结构及时间演变进行了旋转经验正交函数(REOF)分析。结果表明:印度半岛和中南半岛地区感势通量的变化与亚洲季风的爆发及演变有密切关系,是季风爆发的主要关键区。这两个地区的感热积累是东亚季风爆发的触发因素之一,尤其是印度半岛北部感热通量的突变对印度夏季风演变十分重要。印度半岛北部与青藏高原西部的热力差异在季风的爆发和维持中占有重要地位。而东北亚与西北太平洋的热力差异只对东亚夏季风的演变有影响,与冬季风则无直接关联。在东亚季风的爆发中居主导地位的还是印度半岛北部和青藏高原西北部的感热加热作用。  相似文献   

4.
本文是系列文章的第二篇,首先分析了1989年亚洲夏季风爆发时期青藏高原及邻近地区地表感热通量和大气温度场季节变化的基本特征,着重讨论了春季高原地表感热加热和亚洲季风爆发的联系,然后分析了1980~1989年10a南海季风爆发的气候学特征。上述工作表明,在春末初夏过渡季节,高原上空大气温度变化出现阶段性的跃升,并同亚洲夏季风阶段性的爆发有很好的对应关系。高原地表感热通量的持续增大导致了对流层高层局地反气旋式扰动环流的出现,使南亚反气旋北进的过程明显受到高原局地热力环流的调制,而热带东风急流入口区所产生的强烈的高层辐散,提供了有利于热带季风对流在南海地区首先爆发的动力学条件。此外,从5月份至6月中下旬,青藏高原、伊朗—阿富汗上空强大暖中心相继建立的结果,直接导致了热带地区上空大气南北温度梯度的反向依次在南海—孟加拉湾东部和阿拉伯海—印度次大陆由东向西相继建立,从而决定了亚洲季风建立的过程在不同地区爆发的时间不同。  相似文献   

5.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

6.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

7.
基于1980—2018年罗格斯大学全球积雪实验室积雪面积、英国气象局哈得来中心海温、欧洲中期天气预报中心(ECMWF)第5代再分析(ERA-5)土壤湿度、美国国家环境预报中心和美国国家大气研究中心(NCEP/NCAR)再分析、美国国家海洋大气管理局(NOAA)气候预测中心降水(CMAP)和全球降水气候计划降水(GPCP)等数据,采用相关、合成和回归等分析方法,分析了前期青藏高原积雪和厄尔尼诺-南方涛动(ENSO)年际尺度变化对南海夏季风强度及降水的协同影响。结果表明:在年际尺度上,青藏高原积雪、ENSO与南海夏季风变率有密切关系,当青藏高原春季积雪西部偏多且东部偏少时,夏季高原西部对流层温度偏低,在高原上空产生异常下沉气流并向外辐散,引起中国南海地区对流层中低层为异常下沉气流。另外,赤道中东太平洋海温异常偏高则会使夏季印度洋海温异常偏高,对流层温度偏高,在西北太平洋产生东北风异常,加强西北太平洋和中国南海上空的反气旋性环流异常。在青藏高原积雪和ENSO共同影响下,夏季850 hPa中国南海上空反气旋异常进一步加强,南海夏季风强度减弱,降水减少。   相似文献   

8.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

9.
青藏高原积雪对亚洲夏季风影响的诊断及数值研究   总被引:60,自引:15,他引:60       下载免费PDF全文
张顺利  陶诗言 《大气科学》2001,25(3):372-390
通过对青藏高原多、少雪年的合成分析及数值试验,研究了青藏高原积雪对亚洲 夏季风和我国东部气候异常的影响。结果表明:青藏高原积雪造成亚洲大气环流较大的年际变化。高原积雪改变了高原陆面春、夏季的热状况,使亚洲夏季风爆发推迟20天左右。高原积雪通过以下物理过程影响亚洲夏季风和我国东部气候:高原积雪多(少)→高原春、夏季的感热弱(强)→感热加热引起的上升运动弱(强),高原强(弱)环境风场→不利(有利)于高原感热通量向上输送→高原上空对流层加热弱(强)→高原对流层温度低(高)→高原南侧温度对比弱(强)→造成亚洲夏季风弱(强)→我国长江流域易涝(旱)。  相似文献   

10.
Recent Progress in the Impact of the Tibetan Plateau on Climate in China   总被引:14,自引:0,他引:14  
Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing.
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea  相似文献   

11.
青藏高原积雪对气候影响的研究进展和问题   总被引:15,自引:2,他引:13  
系统地回顾了青藏高原积雪对天气气候影响的国内外研究进展,并对研究中存在的一些问题做出了评述。认识到积雪增加将导致亚洲夏季风减弱或爆发推迟,这是通过积雪-季风关系实现的。对反射率和融雪的相对重要性,尚未有一致意见。高原积雪作为一种重要的陆面强迫因子,和副高、阻高、冬夏季风、ENSO、海温等影响中国天气气候的因子有密切关系。在全球变暖的背景下,青藏高原积雪却出现了增加,对这一问题的研究具有重要的现实意义。高原积雪年代际变化的研究,有助于揭示我国近年来“南涝北旱”雨型的原因,同时有利于雨型反转时间的预测。  相似文献   

12.
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.  相似文献   

13.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

14.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

15.
范广洲  罗四维 《高原气象》1997,16(2):140-142
利用一个耦合了简化的简单生物圈模式的大气环流谱模式(SSiB-GCM),初步探讨了青藏高原冬季积雪异常对东、南亚夏季季风环流和降水的影响及其机理。结果表明,高原地区积雪增加将使随后地夏季东、南来季风明显减弱,主要表现为东、南亚季风区降水减少,索马里急流、印度季风的印度西南气流弱弱。另外,还提出欧亚大陆雪盖与整个高原雪盖和高原东部雪盖对东、南亚夏季风影响的敏感问题。与欧亚大陆雪盖相比,高原雪盖是影响  相似文献   

16.
青藏高原抬升加热气候效应研究的新进展   总被引:30,自引:4,他引:26  
对近4年来关于青藏高原加热影响气候的研究进行回顾.首先介绍利用位涡方程和热力适应理论,揭示;夏季高原上空低层气旋式及高层反气旋式环流结构稳定维持的动力学机理.结果表明高原加热作用造成的低层正涡源是低层气旋式环流得以稳定维持的重要原因.而边界层摩擦产生的负位涡是平衡正位涡的主要因素.高原加热还在高原上空形成负位涡,它影响着盛夏的大气环流,是青藏高原上空强大而稳定的反气旋环流得以维持的重要因素.在春夏过渡季节青藏高原非绝热加热对大气环流季节变化以及亚洲季风爆发的影响力方面,进一步确认了感热加热在过渡季节早期(5月中旬以前)环:流演变中的重要作用.青藏高原非绝热加热的时间演变引起了海陆热力差异对比的变化,使副热带高压带首先在孟加拉湾东部断裂,亚洲季风因而在孟加拉湾爆发.结果还表明,用纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.在青藏高原非绝热加热与北半球环流系统年际变化的联系方面,发现夏季青藏高原的加热强(弱)的年份,高原感热加热气泵(SHAP)高(低)效工作,使高原加热对周边地区低层暖湿空气的抽吸效应和对高层大气向周边地区的排放作用加强(减弱),高原及邻近地区的上升运动,下层辐合和上层辐散均增强(减弱),从而影响着高原和周边地区的环流以及亚洲季风区大尺度环流系统.而且高原的加热强迫还能够激发产生一支沿亚欧大陆东部海岸向东北方向传播的Rossby波列,其频散效应可影响到更远的东太平洋以至北美地区的大气环流.研究还表明,盛夏的南亚高压存在"青藏高压型"和"伊朗高压型"的双模态,它们与高原加热状态有关,且显著地与亚洲季风区的气候分布密切联系.  相似文献   

17.
青藏高原加热与亚洲环流季节变化和夏季风爆发   总被引:13,自引:1,他引:13       下载免费PDF全文
刘新  吴国雄  刘屹岷  刘平 《大气科学》2002,26(6):781-793
利用逐日NCEP/NCAR再分析资料分析了春夏过渡季节青减高原非绝热加热和大气环流季节变化以及亚洲季风爆发的关系.结果表明,过渡季节的早期(5月中旬以前)青藏高原总非绝热加热与感热加热的时间演变曲线趋势一致,感热加热在过渡季节早期的环流演变中有很重要的作用.青藏高原非绝热加热的时间演变与北半球环流的季节变化和亚洲夏季风爆发有很好的相关.在过渡季节里,青藏高原非绝热加热的变化引起了海-陆热力差异对比的变化,给亚洲夏季风的爆发建立了有利的背景环境,对亚洲夏季风爆发有明显的影响.结果还表明,用各区域纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.  相似文献   

18.
GMS TBB揭示的1998年长江大水的异常天气成因   总被引:13,自引:0,他引:13  
利用 G M S T B B资料分析了 1998 年夏季长江大水的天气成因。结果指出:在强厄尔尼诺事件和青藏高原强降雪及积雪造成的异常大气环流背景下,副热带高压异常强大且位置偏南偏西,赤道辐合带和夏季风显著偏弱,中纬度地区冷空气不断东移南下,冷暖空气频繁交汇,形成 4 个持续性暴雨和大暴雨时段,酿成了这场大水。  相似文献   

19.
青藏高原感热气泵影响亚洲夏季风的机制   总被引:6,自引:1,他引:5  
本文回顾了二十年来关于青藏高原感热驱动气泵(TP-SHAP)及其影响亚洲夏季风的研究进展,并从能量(θ)、位涡—加热(PV–Q)、和角动量守恒(AMC)的不同角度阐述其影响机制。指出高原斜坡上的表面感热加热改变了移向高原的大气质块的能量从而出现垂直抽吸的重要性。强调了高原加热产生的位涡强迫在近地层制造了强度大范围广的、环绕高原的气旋式环流,把丰沛的水汽从海洋输运到大陆,为季风对流降水提供充足的水汽条件。证明高原加热还通过改变其上空的温、压场的结构从而制造出高原上空近对流层顶的绝对涡度和位涡的最小值,在角动量平衡约束下,在亚洲季风区激发出与Hadley环流反向的季风经圈环流,从而为季风发生发展提供了大范围上升运动的背景。文中还对近年来有关青藏高原影响亚洲夏季风机制的讨论进行概述,并展望了未来的研究方向。  相似文献   

20.
青藏高原感热与黄土高原春季降水异常关系研究   总被引:6,自引:1,他引:5  
利用1961~2000年黄土高原56站的春季降水、气温资料,用SVD方法分析了其与青藏高原感热场的关系。结果表明,降水量与青藏高原感热场的前两模态代表了两场间的主要耦合特征;上年冬季和秋季青藏高原感热场的异常通过影响大气环流,能够导致次年黄土高原春季降水异常;青藏高原感热对黄土高原西部和南部、北部的部分地区影响较显著,而对陕西北部、山西中部影响不明显。前期高原感热场SVD第一、二模态的变化,可以作为黄土高原春季降水异常的预测信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号