首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.  相似文献   

2.
3.
The present study demonstrates that (1) the simulation of the South American warm season (December?CFebruary) climate by an atmospheric general circulation model (AGCM) is sensitive to the representation of land surface processes, (2) the sensitivity is not confined to the ??hot spot?? in Amazonia, and (3) upgrading the representation of those processes can produce a significant improvement in AGCM performance. The reasons for sensitivity and higher success are investigated based on comparisons between observational datasets and simulations by the AGCM coupled to either a simple land scheme that specifies soil moisture availability or to the Simplified Simple Biosphere Model (SSiB) that allows for consideration of soil and vegetation biophysical process. The context for the study is the UCLA AGCM. The most notable simulation improvements are along the lee of the Andes in the lower troposphere, where poleward flow transports abundant moisture from the Amazon basin to high latitudes, and in the monsoon region where the intensity and pattern of precipitation and upper level ice water content are more realistic. It is argued that a better depiction of the Chaco Low, which is controlled by local effects of land surface processes, decisively contributes to the superior model performance with low-level flows in central South America. The better representation of the atmospheric column static stability and large-scale moisture convergence in tropical South America contribute to more realistic precipitation over the monsoon region. The overall simulation improvement is, therefore, due to a combination of different regional processes. This finding is supported by idealized AGCM experiments.  相似文献   

4.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

5.
FGOALS/RegCM动力降尺度对南亚夏季气候变化的预估   总被引:1,自引:0,他引:1  
基于CORDEX计划的试验设计,利用区域气候模式Reg CM3对全球模式FGOALS-g2在RCP8.5情景下的预估结果进行动力降尺度,预估了南亚地区未来近期(2016~2035年)和远期(2080~2099年)的夏季气候变化特征。结果显示,未来两个时段的气候变化空间分布类似,只是远期的变化幅度更大。具体表现为:高低空急流减弱,低空急流中心向北移动。南亚地区整体降水减少,但其北部降水显著增加。降水变化的空间分布主要受降水频率的控制,且降水频率随强度分布的变化表现出明显的地域差异。降水的未来变化特征与水汽输送的变化有密切联系。在区域模式中,受低空急流减弱和北移的影响,水汽输送减弱,对应降水减少。而在全球模式中,虽然季风环流也在减弱,但可降水量增加起主导作用,使得预估的水汽输送增强、降水量增加。  相似文献   

6.
A. M. Grimm 《Climate Dynamics》2004,22(2-3):123-138
The rainy season in most of Brazil is associated with the summer monsoon regime in South America. The quality of this season is important because it rains little during the rest of the year over most of the country. In this study, the influence of La Niña events on the summer monsoon circulation, rainfall and temperature is analyzed with seasonal and monthly resolution, using data from a dense network of stations, giving a comprehensive view of the impact of these events. The expected precipitation percentiles during the monsoon season of La Niña events are calculated, as well as anomalies of surface temperature and thermodynamic parameters. This information is analyzed jointly with anomaly composites of several circulation parameters. The analysis shows that some anomalies, which are consistent and important during part of the season, are smoothed out in a seasonal analysis. There are abrupt changes of anomalies within the summer monsoon season, suggesting the prevalence of regional processes over remote influences during part of the season. In spring there are positive precipitation anomalies in north and central-east Brazil and negative ones in south Brazil. These precipitation anomalies are favored by the perturbation in the Walker and Hadley circulation over the eastern Pacific and South America, and by perturbations in the rotational circulation over southern South America. Northerly moisture inflow from the Atlantic into northern South America is emphasized and diverted towards the mouth of the Amazon by the low-level cyclonic anomaly north of the equator. In December and January, probably triggered by anomalous surface cooling during the spring, there is an anomalous low-level divergence and an anticyclonic anomaly over southeast Brazil. This anomalous circulation directs moisture flux towards south Brazil, causing moisture convergence in part of this region and part of central-west Brazil. The thermodynamic structure in central-east Brazil does not favor precipitation over this region, and the wet anomalies in north Brazil are displaced northward. The dry anomalies in south Brazil almost disappear and even turn positive. In February, after the strongly below normal precipitation of January, the surface temperature anomalies turn positive over southeast Brazil. The low-level anticyclonic anomaly is much weaker than in January. There are positive rainfall anomalies in north Brazil and in the South Atlantic Convergence Zone, and negative ones return to south Brazil.  相似文献   

7.
The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961–1990 to represent baseline climate, and 2011–2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011–2040, 2041–2070 and 2071–2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4–6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation–Evaporation (P–E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and S?o Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.  相似文献   

8.
The interannual variability of climate in the Amazon basin is studied using precipitation and river level anomalies observed near the March/April rainy season peak for the period 1980–86, supported by satellite imagery of tropical convection. Evaluation of this data in conjunction with the corresponding circulation and sea-surface temperature (SST) anomaly patterns indicates that abundant rainy seasons in Northern Amazonia are characterized by anomalously cold surface waters in the tropical eastern Pacific, and negative/positive SST anomalies in the tropical North/South Atlantic, accelerated Northeast trades and a southward displaced Intertropical Convergence Zone (ITCZ) over the Atlantic sector. Years with deficient rainfall show broadly opposite patterns.General circulation model (GCM) experiments using observed SST in three case studies were aimed at testing the teleconnections between SST and Amazon climate implied by the empirical analysis. The GCM-generated surface fields resemble the corresponding observers fields most closely over the tropical Pacific and, with one exception, over the tropical Atlantic as well. The modeled precipitation features, along the Northwest coast of South America, anomalies of opposite sign to the North and South of the equator, in agreement with observations and results from a different GCM. Similarities in simulations run from different initial conditions, but using the same global SST, indicate broad consistency in response to common boundary forcing.  相似文献   

9.
Most major features of the interdecadal shift in boreal winter-spring precipitation over the American continents associated with the 1976–1977 transition are reproduced in atmospheric general circulation model (GCM) simulations forced with observed sea surface temperature (SST). The GCM runs forced with global and tropical Pacific SSTs produce similar multidecadal changes in precipitation, indicating the dominant influence of tropical Pacific SST. Companion experiments indicate that the shift in mean conditions in the tropical Pacific is responsible for these changes. The observed and simulated “post- minus pre-1976” difference in Jan–May precipitation is wet over Mexico and the southwest U.S., dry over the Amazon, wet over sub-Amazonian South America, and dry over the southern tip of South America. This pattern is not dramatically different from a typical El Niño-induced response in precipitation. Although the interdecadal (post- minus pre-1976) and interannual (El Niño?La Niña) SST anomalies differ in detail, they produce a common tropics-wide tropospheric warmth that may explain the similarity in the precipitation anomaly patterns for these two time scales. An analysis of local moisture budget shows that, except for Mexico and the southwest U.S. where the interdecadal shift in precipitation is balanced by evaporation, elsewhere over the Americas it is balanced by a shift in low-level moisture convergence. Moreover, the moisture convergence is due mainly to the change in low-level wind divergence that is linked to low-level ascent and descent.  相似文献   

10.
The South American Monsoon System (SAMS) is a major climatic feature of South America, and its domain extends from Amazon to La Plata basin. The SAMS region is vulnerable to variations of climate and precipitation patterns, which could impact economic activities and lead to potential societal consequences. In the face of a warming future scenario, the importance of the study of the past climate with numerical simulations is to evaluate the climate models and to assure the reliability of future projections. Here we investigate the Mid-Holocene SAMS, evaluating changes in strength, life cycle and associated dynamical mechanisms in ten Earth System Models simulations. Our results show that the SAMS was weaker in the Mid-Holocene than in the pre-industrial climate in December–January–February (DJF), but stronger in September–October–November (SON). This is probably a consequence of insolation variations in the Mid-Holocene, which contributed to changes in the moisture flux from the Atlantic Ocean to the continent, the strength of the upper-level atmospheric circulation, and the amount of precipitation over the SAMS region. Moreover, we suggest that the life cycle of the SAMS was altered during the Mid-Holocene, with an earlier onset and demise. Our results also indicate that Mid-Holocene SAMS changes are connected to precipitation variations near Northeast Brazil, in a dipole configuration of precipitation between western Amazon and Northeast Brazil, due to the influence of the Walker cell. Finally, this study highlights a need for improvement of the numerical models to better simulate the amount of precipitation over South America and the upper-level circulation over western Amazon in SON, which are crucial factors for a more realistic representation of the SAMS.  相似文献   

11.
This study shows the results from a regional climate simulation of the present-day climate, corresponding to the period 1961–1970 over South America, using the regional Eta Model nested within the HadAM3P model from the UK Hadley Centre. The simulation analysis is focused on assessing the capability of the nested regional model in representing spatial patterns of seasonal mean climate and the annual cycle of precipitation and temperature. The goals of this 10-year run for South America are to verify if the Eta Model can be used in climate-change scenarios and to verify if this model has the ability to generate added value for the South American continent. The Eta Model was chosen because there are few investigations using the Eta Model for long integrations over South America and because the vertical coordinate system used in this model is recommended for use over South America due to the presence of the Andes range. In the present 10-year simulation, the regional model reproduced many of the South American mesoscale climate features and together added new value to the driver model. Value was also added to the driver model by reducing seasonal biases in austral winter relative to austral summer. The regional model also exhibits better performance in the representation of low-level circulation, such as the topographically induced northwesterly flux.  相似文献   

12.
Summary Using observational analysis and mesoscale numerical simulations we investigate the subtropical jet (STJ) and its effects on the lower environment (associated mass and momentum adjustments, development of a low-level jet (LLJ), and low-level PV) 48 to 6 hours before the Raleight tornado outbreak (1988). We also compare the environment to a synoptically similar event in which severe weather forecasted but did not develop over central North Carolina. In the severe weather case a self-maintaining. low-level circulation originated over Mexico, propagated across the Gulf Coast and moved over the Piedmont at the time of the tornado. It is characterized by a surface trough, low-level PV maximum, mid-level jet, a warm Mexican airmass and STJ exit region that was co-located and moved across the Gulf Coast States as a coupled system. Initially, a STJ exit region (with thermally indirect ageostrophic circulation) approached the Gulf Coast creating upper-level divergence and ascent, which helped to maintain a low-level trough. A warm Mexican airmass was located over the Gulf Coast (southeast of the surface trough) creating a northwestward-directed PGF, which created a mid-level jet. The right entrance region of the mid-level jet and its associated thermally direct circulation (ascent) was over the low-level trough. These features created an environment favorable to deep convection and the release of latent heat that generated low-level PV. In the non-event case, these features (low-level warm Mexican airmass, mid-level jet, deep convection, low-level PV and low-level trough) were absent over the Gulf Coast States. Received December 23, 1999 Revised January 16, 2000  相似文献   

13.
Performance of a multi-RCM ensemble for South Eastern South America   总被引:1,自引:1,他引:0  
The ability of four regional climate models to reproduce the present-day South American climate is examined with emphasis on La Plata Basin. Models were integrated for the period 1991–2000 with initial and lateral boundary conditions from ERA-40 Reanalysis. The ensemble sea level pressure, maximum and minimum temperatures and precipitation are evaluated in terms of seasonal means and extreme indices based on a percentile approach. Dispersion among the individual models and uncertainties when comparing the ensemble mean with different climatologies are also discussed. The ensemble mean is warmer than the observations in South Eastern South America (SESA), especially for minimum winter temperatures with errors increasing in magnitude towards the tails of the distributions. The ensemble mean reproduces the broad spatial pattern of precipitation, but overestimates the convective precipitation in the tropics and the orographic precipitation along the Andes and over the Brazilian Highlands, and underestimates the precipitation near the monsoon core region. The models overestimate the number of wet days and underestimate the daily intensity of rainfall for both seasons suggesting a premature triggering of convection. The skill of models to simulate the intensity of convective precipitation in summer in SESA and the variability associated with heavy precipitation events (the upper quartile daily precipitation) is far from satisfactory. Owing to the sparseness of the observing network, ensemble and observations uncertainties in seasonal means are comparable for some regions and seasons.  相似文献   

14.
Uncertainty assessments of climate change projections over South America   总被引:2,自引:0,他引:2  
This paper assesses the uncertainties involved in the projections of seasonal temperature and precipitation changes over South America in the twenty-first century. Climate simulations generated by 24 general circulation models are weighted according to the reliability ensemble averaging (REA) approach. The results show that the REA mean temperature change is slightly smaller over South America compared to the simple ensemble mean. Higher reliability in the temperature projections is found over the La Plata basin, and a larger uncertainty range is located in the Amazon. A temperature increase exceeding 2 °C is found to have a very likely (>90 %) probability of occurrence for the entire South American continent in all seasons, and a more likely than not (>50 %) probability of exceeding 4 °C by the end of this century is found over northwest South America, the Amazon Basin, and Northeast Brazil. For precipitation, the projected changes have the same magnitude as the uncertainty range and are comparable to natural variability.  相似文献   

15.
The water cycle over the Amazon basin is a regulatory mechanism for regional and global climate. The atmospheric moisture evaporated from this basin represents an important source of humidity for itself and for other remote regions. The deforestation rates that this basin has experienced in the past decades have implications for regional atmospheric circulation and water vapor transport. In this study, we analyzed the changes in atmospheric moisture transport towards tropical South America during the period 1961–2010, according to two deforestation scenarios of the Amazon defined by Alves et al. (Theor Appl Climatol 100(3-4):337–350, 2017). These scenarios consider deforested areas of approximately 28% and 38% of the Amazon basin, respectively. The Dynamic Recycling Model is used to track the transport of water vapor from different sources in tropical South America and the surrounding oceans. Our results indicate that under deforestation scenarios in the Amazon basin, continental sources reduce their contributions to northern South America at an annual scale by an average of between 40 and 43% with respect to the baseline state. Our analyses suggest that these changes may be related to alterations in the regional Hadley and Walker cells. Amazon deforestation also induces a strengthening of the cross-equatorial flow that transports atmospheric moisture from the Tropical North Atlantic and the Caribbean Sea to tropical South America during the austral summer. A weakening of the cross-equatorial flow is observed during the boreal summer, reducing moisture transport from the Amazon to latitudes further north. These changes alter the patterns of precipitable water contributions to tropical South America from both continental and oceanic sources. Finally, we observed that deforestation over the Amazon basin increases the frequency of occurrence of longer dry seasons in the central-southern Amazon (by between 29 and 57%), depending on the deforestation scenario considered, as previous studies suggest.  相似文献   

16.
We summarize the recent progress in regional climate modeling in South America with the Rossby Centre regional atmospheric climate model (RCA3-E), with emphasis on soil moisture processes. A series of climatological integrations using a continental scale domain nested in reanalysis data were carried out for the initial and mature stages of the South American Monsoon System (SAMS) of 1993–92 and were analyzed on seasonal and monthly timescales. The role of including a spatially varying soil depth, which extends to 8 m in tropical forest, was evaluated against the standard constant soil depth of the model of about 2 m, through two five member ensemble simulations. The influence of the soil depth was relatively weak, with both beneficial and detrimental effects on the simulation of the seasonal mean rainfall. Secondly, two ensembles that differ in their initial state of soil moisture were prepared to study the influence of anomalously dry and wet soil moisture initial conditions on the intraseasonal development of the SAMS. In these simulations the austral winter soil moisture initial condition has a strong influence on wet season rainfall over feed back upon the monsoon, not only over the Amazon region but in subtropical South America as well. Finally, we calculated the soil moisture–precipitation coupling strength through comparing a ten member ensemble forced by the same space–time series of soil moisture fields with an ensemble with interactive soil moisture. Coupling strength is defined as the degree to which the prescribed boundary conditions affect some atmospheric quantity in a climate model, in this context a quantification of the fraction of atmospheric variability that can be ascribed to soil moisture anomalies. La Plata Basin appears as a region where the precipitation is partly controlled by soil moisture, especially in November and January. The continental convective monsoon regions and subtropical South America appears as a region with relatively high coupling strength during the mature phase of monsoon development.  相似文献   

17.
In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRF) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period’s three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall.  相似文献   

18.
The regions where the divergence of vertically integrated water vapor flux, averaged over a season or a year, is positive (negative) are sources (sinks) of moisture for the atmosphere. An aerial river is defined as a stream of strong water vapor flux connecting a source and a sink. Moisture flux, its divergence, and sources and sinks over the tropics of South and Central America and the adjoining Atlantic Ocean are obtained for dry years and for wet years in the Amazon Basin. Results show that the Amazon Basin is a sink region for atmospheric moisture in all seasons and that there are two source regions for the moisture in the basin, one situated in the South Atlantic and the other in the North Atlantic, both located equator-ward of the respective subtropical high-pressure centers. The convergence of moisture increases over the Amazon Basin in austral summer, and at the same time it decreases in the Pacific and Atlantic ITCZs. Box model calculations reveal that the wet years, on the average, present about 55 % more moisture convergence than the dry years in the Amazon Basin. A reduction in the moisture inflow across the eastern and northern boundaries of the basin (at 45°W and at the Equator, respectively) and an increase in the outflow across the southern boundary (at 15°S) lead to dry conditions. The annual mean contribution of moisture convergence to the precipitation over the Amazon Basin is estimated to be 70 %. In the dry years, it lowers to around 50 %. The net convergence of water vapor flux over the basin is a good indicator of the wet or dry condition.  相似文献   

19.
Climate change impact on precipitation for the Amazon and La Plata basins   总被引:2,自引:0,他引:2  
We analyze the local and remote impacts of climate change on the hydroclimate of the Amazon and La Plata basins of South America (SA) in an ensemble of four 21st century projections (1970–2100, RCP8.5 scenario) with the regional climate model RegCM4 driven by the HadGEM, GFDL and MPI global climate models (GCMs) over the SA CORDEX domain. Two RegCM4 configurations are used, one employing the CLM land surface and the Emanuel convective schemes, and one using the BATS land surface and Grell (over land) convection schemes. First, we find considerable sensitivity of the precipitation change signal to both the driving GCM and the RegCM4 physics schemes (with the latter even greater than the first), highlighting the pronounced uncertainty of regional projections over the region. However, some improvements in the simulation of the annual cycle of precipitation over the Amazon and La Plata basins is found when using RegCM4, and some consistent change signals across the experiments are found. One is a tendency towards an extension of the dry season over central SA deriving from a late onset and an early retreat of the SA monsoon. The second is a dipolar response consisting of reduced precipitation over the broad Amazon and Central Brazil region and increased precipitation over the La Plata basin and central Argentina. An analysis of the relative influence on the change signal of local soil-moisture feedbacks and remote effects of Sea Surface Temperature (SST) over the Niño 3.4 region indicates that the former is prevalent over the Amazon basin while the latter dominates over the La Plata Basin. Also, the soil moisture feedback has a larger role in RegCM4 than in the GCMs.  相似文献   

20.
文中利用包括湍流摩擦耗散的原始方程模式研究了高空西风急流、低空南风急流和水汽凝结过程对锢囚锋环流时间演变和降水强度变化的影响 ,计算结果表明 ,水汽凝结过程与高空西风急流或低空南风急流的共同作用对锢囚锋环流的演变起非常重要的作用 ,能在锢囚锋区形成强中尺度深对流系统 ,与干大气中高空西风急流对锢囚锋环流的作用远大于低空南风急流的情况相反 ,在存在水汽凝结过程的湿大气中 ,低空南风急流对锢囚锋的影响远大于高空西风急流 ,它产生的降水过程时间更长 ,降水强度更大 ,降水范围更广 ,是锢囚锋区产生强中尺度降水的重要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号