首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Summary A regional climate model (RCM) is described which incorporates an improved scheme for soil moisture availability (SMA) compared to an earlier version. The improvement introduces a sensitivity of SMA to soil type, vegetation cover and ground albedo, making the model more adaptable to divers regions. In addition, the interactive SMA depends on past precipitation, ground temperature and terrain relief. Six RCM simulations of the monthly mean climate over southern Africa are performed at 0.5° grid spacing. Improvements in the RCM climate simulations compared to control runs are attributed to the newer SMA scheme. Only a slight improvement in skill results from driving the RCM with observational analyses as opposed to GCM “predicted” lateral boundary conditions. The high spatial resolution of the RCM provides a distinct advantage in the simulated spatial distribution of precipitation compared with a global model run at an effective grid spacing of 2.8°. The mesoscale precipitation signal in the RCM simulations is more dominant during the rather dry December 1982 than during December 1988. The improved SMA scheme contributed to a realistic partition between latent and sensible heat fluxes at the ground-atmosphere boundary and consequently a realistic diurnal cycle of ground temperature. Simulated differences in the spatial distribution of rainfall between December 1982 and December 1988 are more realistic with the improved scheme. Received June 28, 2001 Revised August 27, 2001  相似文献   

2.
A 26-year simulation (1980–2005) was performed with the Weather Research and Forecast (WRF) model over the Volta Basin in West Africa. This was to investigate the ability of a climate version of WRF to reproduce present day temperature and precipitation over the Volta Basin. The ERA-Interim reanalysis and one realization of the ECHAM6 global circulation model (GCM) data were dynamically downscaled using two nested domains within the WRF model. The outer domain had a horizontal resolution of 50 km and covered the whole of West Africa while the inner domain had a horizontal resolution of 10 km. It was observed that biases in the respective forcing data were carried over to the RCM, but also the RCM itself contributed to the mean bias of the model. Also, the biases in the 50-km domain were transferred unchanged, especially in the case of temperature, to the 10-km domain, but, for precipitation, the higher-resolution simulations increased the mean bias in some cases. While in general, WRF underestimated temperature in both the outer (mean biases of ?1.6 and ?2.3 K for ERA-Interim and ECHAM6, respectively) and the inner (mean biases of ?0.9 K for the reanalysis and ?1.8 K for the GCM) domains, WRF slightly underestimated precipitation in the coarser domain but overestimated precipitation in the finer domain over the Volta Basin. The performance of the GCM, in general, is good, particularly for temperature with mean bias of ?0.7 K over the outer domain. However, for precipitation, the added value of the RCM cannot be overlooked, especially over the whole West African region on the annual time scale (mean biases of ?3% for WRF and ?8% for ECHAM6). Over the whole Volta Basin and the Soudano-Sahel for the month of April and spring (MAM) rainfall, respectively, mean bias close to 0% was simulated. Biases in the interannual variability in both temperature and precipitation over the basin were smaller in the WRF than the ECHAM6. High spatial pattern correlations between 0.7 and 0.8 were achieved for the autumn precipitation and low spatial correlation in the range of 0.0 and 0.2 for the winter season precipitation over the whole basin and all the three belts over the basin.  相似文献   

3.
The projected climate change signals of a five-member high resolution ensemble, based on two global climate models (GCMs: ECHAM5 and CCCma3) and two regional climate models (RCMs: CLM and WRF) are analysed in this paper (Part II of a two part paper). In Part I the performance of the models for the control period are presented. The RCMs use a two nest procedure over Europe and Germany with a final spatial resolution of 7 km to downscale the GCM simulations for the present (1971–2000) and future A1B scenario (2021–2050) time periods. The ensemble was extended by earlier simulations with the RCM REMO (driven by ECHAM5, two realisations) at a slightly coarser resolution. The climate change signals are evaluated and tested for significance for mean values and the seasonal cycles of temperature and precipitation, as well as for the intensity distribution of precipitation and the numbers of dry days and dry periods. All GCMs project a significant warming over Europe on seasonal and annual scales and the projected warming of the GCMs is retained in both nests of the RCMs, however, with added small variations. The mean warming over Germany of all ensemble members for the fine nest is in the range of 0.8 and 1.3 K with an average of 1.1 K. For mean annual precipitation the climate change signal varies in the range of ?2 to 9 % over Germany within the ensemble. Changes in the number of wet days are projected in the range of ±4 % on the annual scale for the future time period. For the probability distribution of precipitation intensity, a decrease of lower intensities and an increase of moderate and higher intensities is projected by most ensemble members. For the mean values, the results indicate that the projected temperature change signal is caused mainly by the GCM and its initial condition (realisation), with little impact from the RCM. For precipitation, in addition, the RCM affects the climate change signal significantly.  相似文献   

4.
The Community Climate Model Version 3.6 is used to simulate the mean climate of West Africa during the Northern Hemisphere summer season (June-August). The climate model uses prescribed climatological sea surface temperatures (SSTs) and observed SSTs during the 1979-1993 period. Two important circulation features, the African Easterly Jet (AEJ) and the Tropical Easterly Jet (TEJ), are found in the simulations but a westerly wind bias is found with respect to 700 hPa winds. Consequently, easterly waves and rain rates are poorly simulated. The primary cause of the poorly simulated AEJ is the advection of cold air from Europe producing a cold bias over northern Africa and a weaker than observed meridional temperature gradient. The cold bias is caused by an eastward displacement of the simulated Azores surface high into Western Europe creating a stronger than observed meridional sea level pressure gradient over northern Africa. This bias systematically occurs in simulations using both climatological and observed SSTs. The biases in sea level pressure, temperature and zonal winds have the potential to produce poor regional climate model results for West Africa if the meteorological output from the CCM3 is used as lateral boundaries. Moreover, these biases introduce uncertainties to West African GCM sensitivity studies associated with interannual variability, land-use change and elevated anthropogenic greenhouse gases.  相似文献   

5.
 Two ten-year simulations made with a European regional climate model (RCM) are compared. They are driven by the same observed sea surface temperatures but use different lateral boundary forcing. For one simulation, RCM AMIP, this forcing is obtained from a standard integration of a global general circulation model (GCM AMIP), whereas for the other simulation, RCM ASSIM, it is derived from a time series of operational analyses. The archive of analysis fields (surface pressure plus winds and temperatures on various pressure levels) is not sufficiently comprehensive to provide directly the full set of driving fields required for the RCM (in particular, no moisture fields are present), so these are obtained via a GCM integration, GCM ASSIM, in which the model is continuously relaxed towards the analysis fields using a data assimilation technique. Errors in RCM AMIP can arise either from the internal RCM physics or from errors in the lateral boundary forcing inherited from GCM AMIP. Errors in RCM ASSIM can arise from the internal RCM physics or the boundary moisture forcing but not from the driving circulation. Although previous studies have considered RCM integrations driven either by output from standard GCM integrations or operational analyses, our study is the first to compare parallel integrations of each type. This allows the total systematic error in an RCM integration driven by standard GCM output to be partitioned into components arising from the driving circulation and the internal RCM physics. These components indicate the scope for reducing regional simulation biases by improving either the driving GCM or the RCM itself. The results relate mainly to elements of surface climate likely to be influenced by both the driving circulation and regional physical processes operating in the RCM. For cloud cover, errors are found to arise largely from the internal RCM physics. Values are too low despite a positive relative humidity bias, indicating shortcomings in the parametrisation scheme used to calculate cloud cover. In summer, surface temperature and precipitation errors are also explained principally by regional processes. For example excessive solar heating leads to anomalously high surface temperatures over southern Europe and excessive drying of the soil reduces precipitation in the south eastern sector of the domain. The lateral boundary forcing reduces precipitation in the south eastern sector of the domain. The lateral boundary forcing also exerts some influence, mainly via a tropospheric cold bias which partially offsets the warming over southern Europe and also increases precipitation. In other seasons the lateral boundary forcing and the regional physics both contribute significantly to the errors in surface temperature and precipitation. In winter the boundary forcing (apart from moisture) is responsible for about 60% of the total error variance for temperature and about 40% for precipitation, due to the cold bias and circulation errors such as a southward shift in the storm track. The remaining errors arise from the regional physics, although for precipitation an excessive supply of moisture from the lateral boundaries also contributes. The skill of the mesoscale component of the surface temperature and precipitation distributions exceeds previous estimates, due to more realistic observed climatology. The mesoscale patterns are very similar in the two RCM simulations indicating that errors in the simulation of fine scale detail arise mainly from inadequate representations of local forcings rather than errors in the large-scale circulation. Circulation errors in RCM AMIP (e.g. cold bias, southward shift of storm track) are also present in GCM AMIP, but are largely absent in RCM ASSIM except in summer. This confirms evidence from previous work that the key to reducing most circulation errors in the RCM lies in improving the driving GCM. Regional processes only make a major contribution to circulation errors in summer, when reduced advection from the boundaries allows errors in surface temperature to be transmitted more effectively into the troposphere. Finally, we find evidence of error balances in the GCM which act to minimise biases in important climatological variables. This reflects tuning of the model physics at GCM resolution. In order to achieve simultaneous optimisation of the RCM and GCM at widely differing resolutions it may be necessary to introduce explicit scale dependences into some aspects of the physics. Received: 17 September 1997/Accepted: 10 March 1998  相似文献   

6.
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.  相似文献   

7.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

8.
To downscale climate change scenarios, long-term regional climatologies employing global model forcing are needed for West Africa. As a first step, this work examines present-day integrations (1981–2000) with a regional climate model (RCM) over West Africa nested in both reanalysis data and output from a coupled atmospheric–ocean general circulation model (AOGCM). Precipitation and temperature from both simulations are compared to the Climate Research Unit observations. Their spatial distributions are shown to be realistic. Annual cycles are considerably correlated. Simulations are also evaluated with respect to the driving large-scale fields. RCM offers some improvements compared to the AOGCM driving field. Evaluation of seasonal precipitation biases reveals that RCM dry biases are highest on June–August around mountains. They are associated to cold biases in temperature which, in turn, are connected to wet biases in precipitation outside orographic zones. Biases brought through AOGCM forcing are relatively low. Despite these errors, the simulations produce encouraging results and show the ability of the AOGCM to drive the RCM for future projections.  相似文献   

9.
Multiyear (1983?C2006) hindcast simulation of summer monsoon over South Asia has been carried out using the regional climate model of the Beijing Climate Centre (BCC_RegCM1.0). The regional climate model (hereafter BCC RCM) is nested into the global climate model of the Beijing Climate Centre BCC_CGCM1.0 (here after CGCM). The regional climate model is initialized on 01 May and integrated up to the end of the September for 24?years. Compared to the driving CGCM the BCC RCM reproduces reasonably well the intensity and magnitude of the large-scale features associated with the South Asia summer monsoon such as the upper level anticyclone at 200?hPa, the mid-tropospheric warming over the Tibetan plateau, the surface heat low and the 850?hPa moisture transport from ocean to the land. Both models, i.e., BCC RCM and the driving CGCM overestimates (underestimates) the 850?hPa southwesterly flow over the northern (southern) Arabian Sea. Moreover, both models overestimate the seasonal mean precipitation over much of the South Asia region compared to the observations. However, the precipitation biases are significantly reduced in the BCC RCM simulations. Furthermore, both models simulate reasonably the interannual variability of the summer monsoon over India. The precipitation index simulated by BCC RCM shows significant correlation (0.62) with the observed one. The BCC RCM simulates reasonably well the spatial and temporal variation of the precipitation and surface air temperature compared to the driving CGCM. Further, the temperature biases are significantly reduced (1?C4°C) in the BCC RCM simulations. The simulated vertical structure of the atmosphere show biases above the four sub-regions, however, these biases are significantly reduced in the BCC RCM simulations compared to the driving CGCM. Compared to the driving CGCM, the evolution processes of the onset of summer monsoon, e.g., the meridional temperature gradient and the vertical wind shear are well simulated by the BCC RCM. The 24-year simulations also show that with a little exception the BCC RCM is capable to reproduce the monsoon active and break phases and the intraseasonal precipitation variation over the Indian subcontinent.  相似文献   

10.
This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling.  相似文献   

11.
Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors   总被引:4,自引:3,他引:1  
Monthly-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CORDEX-Africa regional climate model (RCM) hindcast experiment are evaluated for model skill and systematic biases. All RCMs simulate basic climatological features of these variables reasonably, but systematic biases also occur across these models. All RCMs show higher fidelity in simulating precipitation for the west part of Africa than for the east part, and for the tropics than for northern Sahara. Interannual variation in the wet season rainfall is better simulated for the western Sahel than for the Ethiopian Highlands. RCM skill is higher for TAVG and TMAX than for TMIN, and regionally, for the subtropics than for the tropics. RCM skill in simulating cloudiness is generally lower than for precipitation or temperatures. For all variables, multi-model ensemble (ENS) generally outperforms individual models included in ENS. An overarching conclusion in this study is that some model biases vary systematically for regions, variables, and metrics, posing difficulties in defining a single representative index to measure model fidelity, especially for constructing ENS. This is an important concern in climate change impact assessment studies because most assessment models are run for specific regions/sectors with forcing data derived from model outputs. Thus, model evaluation and ENS construction must be performed separately for regions, variables, and metrics as required by specific analysis and/or assessments. Evaluations using multiple reference datasets reveal that cross-examination, quality control, and uncertainty estimates of reference data are crucial in model evaluations.  相似文献   

12.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

13.
Clear precipitation trends have been observed in Europe over the past century. In winter, precipitation has increased in north-western Europe. In summer, there has been an increase along many coasts in the same area. Over the second half of the past century precipitation also decreased in southern Europe in winter. An investigation of precipitation trends in two multi-model ensembles including both global and regional climate models shows that these models fail to reproduce the observed trends. In many regions the model spread does not cover the trend in the observations. In contrast, regional climate model (RCM) experiments with observed boundary conditions reproduce the observed precipitation trends much better. The observed trends are largely compatible with the range of uncertainties spanned by the ensemble, indicating that the boundary conditions of RCMs are responsible for large parts of the trend biases. We find that the main factor in setting the trend in winter is atmospheric circulation, for summer sea surface temperature (SST) is important in setting precipitation trends along the North Sea and Atlantic coasts. The causes of the large trends in atmospheric circulation and summer SST are not known. For SST there may be a connection with the well-known ocean circulation biases in low-resolution ocean models. A quantitative understanding of the causes of these trends is needed so that climate model based projections of future climate can be corrected for these precipitation trend biases.  相似文献   

14.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

15.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

16.
We show the evaluation of ENSEMBLES regional climate models (RCMs) driven by reanalysis ERA40 over a region centered at the Czech Republic. Attention is paid especially to the model ALADIN-CLIMATE/CZ, being used as the basis of the new climate change scenarios simulation for the Czech Republic. The validation criteria used here are based on monthly or seasonal mean air temperature and precipitation. We concentrate not only on spatiotemporal mean values but also on temporal standard deviation, inter-annual variability, the mean annual cycle, and the skill of the models to represent the observed spatial patterns of these quantities. Model ALADIN-CLIMATE/CZ performs quite well in comparison to the other RCMs; we find its performance satisfactory for further use for impact studies. However, it is also shown that the results of evaluation of the RCMs’ skill in simulating observed climate strongly depend on the criteria incorporated for the evaluation.  相似文献   

17.
Most of current general circulation models (GCMs) show a remarkable positive precipitation bias over the southwestern equatorial Indian Ocean (SWEIO), which can be thought of as a westward expansion of the simulated IO convergence zone toward the coast of Africa. The bias is common to both coupled and uncoupled models, suggesting that its origin does not stem from the way boundary conditions are specified. The spatio-temporal evolution of the precipitation and associated three-dimensional atmospheric circulation biases is comprehensively characterized by comparing the GFDL AM3 atmospheric model to observations. It is shown that the oceanic bias, which develops in spring and reduces during the monsoon season, is associated to a consistent precipitation and circulation anomalous pattern over the whole Indian region. In the vertical, the areas are linked by an anomalous Hadley-type meridional circulation, whose northern branch subsides over northeastern India significantly affecting the monsoon evolution (e.g., delaying its onset). This study makes the case that the precipitation bias over the SWEIO is forced by the model excess response to the local meridional sea surface temperature (SST) gradient through enhanced near-surface meridional wind convergence. This is suggested by observational evidence and supported by AM3 sensitivity experiments. The latter show that relaxing the magnitude of the meridional SST gradient in the SWEIO can lead to a significant reduction of both local and large-scale precipitation and circulation biases. The ability of local anomalies over the SWEIO to force a large-scale remote response to the north is further supported by numerical experiments with the GFDL spectral dry dynamical core model. By imposing a realistic anomalous heating source over the SWEIO the model is able to reproduce the main dynamical features of the AM3 bias. These results indicate that improved GCM simulations of the South Asian summer monsoon could be achieved by reducing the springtime model bias over the SWEIO. Deficiencies in the atmospheric model, and in particular in the convective parameterization, are suggested to play a key role. Finally, the important mechanism controlling the simulated precipitation distribution over South Asia found here should be considered in the interpretation and attribution of regional precipitation variation under climate change.  相似文献   

18.
A 37-year simulation of global climate by a 9-level GCM on an 8°×10° grid showed realistic interannual variation of the computed precipitation over the African Sahel. The model includes an interactive ocean so that interannual variations of sea-surface temperature (SST) also occur. Comparison of an ensemble of five summers that were rainy over the Sahel with five summers of simulated drought showed that insufficient ambient moisture was the immediate cause of the lack of moist convection. The drier conditions are shown to result from weaker moisture advection over the southeast Atlantic Ocean. Weaker southerly winds there and lower sea-level pressure gradients seemed to result from anomalously warm SST. Such SST anomalies have been linked to Sahelian drought in previous observational studies. These regional circulations that were conducive to lower rainfall rates during the north African summer monsoon were not manifestations of the more generalized zonal mean circulation.  相似文献   

19.
This study presents the evaluation of simulations from two new Canadian regional climate models (RCMs), CanRCM4 and CRCM5, with a focus on the models’ skill in simulating daily precipitation indices and the Standardized Precipitation Index (SPI). The evaluation was carried out over the past two decades using several sets of gridded observations that partially cover North America. The new Canadian RCMs were also compared with four reanalysis products and six other RCMs. The different configurations of the Canadian RCM simulations also permit evaluation of the impact of different spatial resolutions, atmospheric drivers, and nudging conditions. The results from the new Canadian models show some improvement in precipitation characteristics over the previous Canadian RCM (CRCM4), but these differ with the seasons. For winter, CanRCM4 and CRCM5 have better skill than most other models over all of North America. For the summer, CRCM5 0.44° performs best over the United States, while CRCM4 has the best skill over Canada. Good skill is exhibited by CanRCM4 and CRCM4 in simulating the 6-month SPI over the Prairies and the western US Corn Belt. In general, differences are small between runs with or without large-scale spectral nudging; differences are small when different boundary conditions are used.  相似文献   

20.
The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号